Inverting dynamic force microscopy: from signals to time-resolved interaction forces
- PMID: 12070341
- PMCID: PMC124277
- DOI: 10.1073/pnas.122040599
Inverting dynamic force microscopy: from signals to time-resolved interaction forces
Abstract
Transient forces between nanoscale objects on surfaces govern friction, viscous flow, and plastic deformation, occur during manipulation of matter, or mediate the local wetting behavior of thin films. To resolve transient forces on the (sub) microsecond time and nanometer length scale, dynamic atomic force microscopy (AFM) offers largely unexploited potential. Full spectral analysis of the AFM signal completes dynamic AFM. Inverting the signal formation process, we measure the time course of the force effective at the sensing tip. This approach yields rich insight into processes at the tip and dispenses with a priori assumptions about the interaction, as it relies solely on measured data. Force measurements on silicon under ambient conditions demonstrate the distinct signature of the interaction and reveal that peak forces exceeding 200 nN are applied to the sample in a typical imaging situation. These forces are 2 orders of magnitude higher than those in covalent bonds.
Figures





Similar articles
-
An atomic force microscope tip designed to measure time-varying nanomechanical forces.Nat Nanotechnol. 2007 Aug;2(8):507-14. doi: 10.1038/nnano.2007.226. Epub 2007 Jul 29. Nat Nanotechnol. 2007. PMID: 18654349
-
Nano-mechanical exploration of the surface and sub-surface of hydrated cells of Staphylococcus epidermidis.Antonie Van Leeuwenhoek. 2006 Apr-May;89(3-4):373-86. doi: 10.1007/s10482-005-9041-y. Epub 2006 Apr 25. Antonie Van Leeuwenhoek. 2006. PMID: 16779634
-
Nanoscale imaging of microbial pathogens using atomic force microscopy.Wiley Interdiscip Rev Nanomed Nanobiotechnol. 2009 Mar-Apr;1(2):168-80. doi: 10.1002/wnan.18. Wiley Interdiscip Rev Nanomed Nanobiotechnol. 2009. PMID: 20049788 Review.
-
High-resolution noncontact atomic force microscopy.Nanotechnology. 2009 Jul 1;20(26):260201. doi: 10.1088/0957-4484/20/26/260201. Epub 2009 Jun 10. Nanotechnology. 2009. PMID: 19531843
-
Atomic force microscopy of microbial cells: application to nanomechanical properties, surface forces and molecular recognition forces.Colloids Surf B Biointerfaces. 2007 Jan 15;54(1):10-9. doi: 10.1016/j.colsurfb.2006.09.014. Epub 2006 Sep 26. Colloids Surf B Biointerfaces. 2007. PMID: 17067786 Review.
Cited by
-
Interpreting motion and force for narrow-band intermodulation atomic force microscopy.Beilstein J Nanotechnol. 2013;4:45-56. doi: 10.3762/bjnano.4.5. Epub 2013 Jan 21. Beilstein J Nanotechnol. 2013. PMID: 23400552 Free PMC article.
-
Quantifying nanoscale forces using machine learning in dynamic atomic force microscopy.Nanoscale Adv. 2022 Apr 5;4(9):2134-2143. doi: 10.1039/d2na00011c. eCollection 2022 May 3. Nanoscale Adv. 2022. PMID: 35601812 Free PMC article.
-
Polynomial force approximations and multifrequency atomic force microscopy.Beilstein J Nanotechnol. 2013 Jun 10;4:352-60. doi: 10.3762/bjnano.4.41. Print 2013. Beilstein J Nanotechnol. 2013. PMID: 23844340 Free PMC article.
-
Probe microscopy: images from below the surface.Nat Nanotechnol. 2010 Feb;5(2):101-2. doi: 10.1038/nnano.2010.14. Nat Nanotechnol. 2010. PMID: 20130588 No abstract available.
-
The emergence of multifrequency force microscopy.Nat Nanotechnol. 2012 Apr 1;7(4):217-26. doi: 10.1038/nnano.2012.38. Nat Nanotechnol. 2012. PMID: 22466857 Review.
References
-
- Ferry J D. Viscoelastic Properties of Polymers. New York: Wiley; 1980.
-
- Wilhelm M. Macromol Mater Eng. 2002;287:83–105.
-
- Binnig G, Quate C F, Gerber C. Phys Rev Lett. 1986;56:930–933. - PubMed
-
- Friedbacher G, Fuchs H. Pure Appl Chem. 1999;71:1337–1357.
Publication types
MeSH terms
LinkOut - more resources
Full Text Sources
Other Literature Sources
Miscellaneous