Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2002 Apr;4(2):129-36.
doi: 10.1034/j.1399-5618.2002.01179.x.

Neuroprotective effects of lithium in cultured cells and animal models of diseases

Affiliations
Review

Neuroprotective effects of lithium in cultured cells and animal models of diseases

De-Maw Chuang et al. Bipolar Disord. 2002 Apr.

Abstract

Lithium, the major drug used to treat manic depressive illness, robustly protects cultured rat brain neurons from glutamate excitotoxicity mediated by N-methyl-D-aspartate (NMDA) receptors. The lithium neuroprotection against glutamate excitotoxiciy is long-lasting, requires long-term pretreatment and occurs at therapeutic concentrations of this drug. The neuroprotective mcchanisms involve inactivation of NMDA receptors, decreased expression of pro-apoptotic proteins, p53 and Bax, enhanced expression of the cytoprotective protein, Bcl-2, and activation of the cell survival kinase, Akt. In addition, lithium pretreatment suppresses glutamate-induced loss of the activities of Akt, cyclic AMP-response element binding protein (CREB), c-Jun - N-terminal kinase (JNK) and p38 kinase. Lithium also reduces brain damage in animal models of neurodegenerative diseases in which excitotoxicity has been implicated. In the rat model of stroke using middle cerebral artery occlusion, lithium markedly reduces neurologic deficits and decreases brain infarct volume even when administered after the onset of ischemia. In a rat Huntington's disease model, lithium significantly reduces brain lesions resulting from intrastriatal infusion of quinolinic acid, an excitotoxin. Our results suggest that lithium might have utility in the treatment of neurodegenerative disorders in addition to its common use for the treatment of bipolar depressive patients.

PubMed Disclaimer

MeSH terms

Substances

LinkOut - more resources