Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2002 Aug;71(2):155-66.
doi: 10.1007/s00223-001-2116-5. Epub 2002 Jun 20.

Ultrastructure of forming enamel in mouse bearing a transgene that disrupts the amelogenin self-assembly domains

Affiliations

Ultrastructure of forming enamel in mouse bearing a transgene that disrupts the amelogenin self-assembly domains

C Dunglas et al. Calcif Tissue Int. 2002 Aug.

Abstract

The mouse X-chromosomal amelogenin gene promoter was used to drive the expression of mutated amelogenin proteins in vivo. Two different transgenic mouse lines based on deletions to either the amino-terminal (A-domain deletions) or to the carboxyl-region (B-domain deletions) were bred. In the molars of newborn A-domain deleted transgenic mice the formation of the initial layer of aprismatic enamel was delayed. There were severe structural alterations in the enamel of incisors of newborn mice bearing the A-domain deletion which were not apparent in animals bearing the B-domain deletion. In the A-domain-deleted animals, stippled material accumulated throughout the entire thickness of the forming enamel apparently causing a disruption of the normal rod-to-inter-rod relationship. This stippled material was likened to and interpreted as being groupings of amelogenin nanospheres. In the B-domain-deleted animals the stippled material was detected only in minute defects of the forming enamel. These data suggest significant differences in nanosphere assembly properties for animals bearing either the A-domain or the B-domain-deleted transgene. The present in vivo experimental approach suggests that at early stages of enamel formation, the A-domain plays a greater role than does the B-domain in amelogenin self-assembly, and consequently in enamel architecture and structure.

PubMed Disclaimer

Publication types

MeSH terms

Associated data

LinkOut - more resources