Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2002 Jul;83(Pt 7):1707-1720.
doi: 10.1099/0022-1317-83-7-1707.

Poliovirus pathogenesis in a new poliovirus receptor transgenic mouse model: age-dependent paralysis and a mucosal route of infection

Affiliations

Poliovirus pathogenesis in a new poliovirus receptor transgenic mouse model: age-dependent paralysis and a mucosal route of infection

Shane Crotty et al. J Gen Virol. 2002 Jul.

Abstract

We constructed a poliovirus receptor (PVR) transgenic mouse line carrying a PVR delta cDNA driven by a beta-actin promoter. We refer to this model as the cPVR mouse. The cPVR mice express Pvr in a variety of tissues (including small intestines, brain, spinal cord, muscle, blood and liver) and are susceptible to infection after intraperitoneal, intracerebral or intramuscular inoculation of poliovirus. After intraperitoneal inoculation, poliovirus replication is observed in cPVR muscle, brain, spinal cord and, notably, small intestine. The cPVR mice exhibit a striking age-dependent paralysis after intramuscular infection, with 2-week-old mice being 10,000-fold more susceptible to paralytic disease than adult mice. The cPVR mice are also susceptible to paralysis following intranasal infection with poliovirus. After intranasal infection, virus replication is observed in the olfactory bulb, cerebrum, brain stem and spinal cord, suggesting that intranasal infection of cPVR mice is a model for bulbar paralysis. Intranasally infected mice frequently display unusual neurological behaviours. The PVR transgenic mouse reported here provides the first available model for a mucosal route of infection with poliovirus.

PubMed Disclaimer

Publication types

MeSH terms