Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2002 Jun 21;319(5):1157-64.
doi: 10.1016/S0022-2836(02)00372-8.

Muscle Z-band ultrastructure: titin Z-repeats and Z-band periodicities do not match

Affiliations

Muscle Z-band ultrastructure: titin Z-repeats and Z-band periodicities do not match

Pradeep K Luther et al. J Mol Biol. .

Abstract

Vertebrate muscle Z-bands show zig-zag densities due to different sets of alpha-actinin cross-links between anti-parallel actin molecules. Their axial extent varies with muscle and fibre type: approximately 50 nm in fast and approximately 100 nm in cardiac and slow muscles, corresponding to the number of alpha-actinin cross-links present. Fish white (fast) muscle Z-bands have two sets of alpha-actinin links, mammalian slow muscle Z-bands have six. The modular structure of the approximately 3 MDa protein titin that spans from M-band to Z-band correlates with the axial structure of the sarcomere; it may form the template for myofibril assembly. The Z-band-located amino-terminal 80 kDa of titin includes 45 residue repeating modules (Z-repeats) that are expressed differentially; heart, slow and fast muscles have seven, four to six and two to four Z-repeats, respectively. Gautel et al. proposed a Z-band model in which each Z-repeat links to one level of alpha-actinin cross-links, requiring that the axial extent of a Z-repeat is the same as the axial separation of alpha-actinin layers, of which there are two in every actin crossover repeat. The span of a Z-repeat in vitro is estimated by Atkinson et al. to be 12 nm or less; much less than half the normal vertebrate muscle actin crossover length of 36 nm. Different actin-binding proteins can change this length; it is reduced markedly by cofilin binding, or can increase to 38.5 nm in the abnormally large nemaline myopathy Z-band. Here, we tested whether in normal vertebrate Z-bands there is a marked reduction in crossover repeat so that it matches twice the apparent Z-repeat length of 12 nm. We found that the measured periodicities in wide Z-bands in slow and cardiac muscles are all very similar, about 39 nm, just like the nemaline myopathy Z-bands. Hence, the 39 nm periodicity is an important conserved feature of Z-bands and either cannot be explained by titin Z-repeats as previously suggested or may correlate with two Z-repeats.

PubMed Disclaimer

Similar articles

Cited by

Publication types

MeSH terms

LinkOut - more resources