Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2002 Aug 30;277(35):32003-14.
doi: 10.1074/jbc.M112332200. Epub 2002 Jun 24.

cGMP-dependent protein kinase I beta physically and functionally interacts with the transcriptional regulator TFII-I

Affiliations
Free article

cGMP-dependent protein kinase I beta physically and functionally interacts with the transcriptional regulator TFII-I

Darren E Casteel et al. J Biol Chem. .
Free article

Abstract

Transcriptional regulation of the fos promoter by nitric oxide and cGMP can occur by nuclear translocation of cGMP-dependent protein kinase I (G-kinase I) (Gudi, T., Lohmann, S. M., and Pilz, R. B. (1997) Mol. Cell. Biol. 17, 5244-5254). To identify nuclear targets of G-kinase I, we performed a yeast two-hybrid screen with G-kinase I beta as bait. We found that G-kinase I beta interacted specifically with TFII-I, an unusual transcriptional regulator that associates with multiple proteins to modulate both basal and signal-induced transcription. By using purified recombinant proteins, the interaction was mapped to the N-terminal 93 amino acids of G-kinase I beta and one of six 95-amino acid repeats found in TFII-I. In baby hamster kidney cells, cGMP analogs enhanced co-immunoprecipitation of G-kinase I beta and TFII-I by inducing co-localization of both proteins in the nucleus, but in other cell types containing cytoplasmic TFII-I the G-kinase-TFII-I interaction was largely cGMP-independent. G-kinase phosphorylated TFII-I in vitro and in vivo on Ser(371) and Ser(743) outside of the interaction domain. G-kinase strongly enhanced TFII-I transactivation of a serum-response element-containing promoter in COS7 cells, and this effect was lost when Ser(371) and Ser(743) of TFII-I were mutated. TFII-I by itself had little effect on a full-length fos promoter in baby hamster kidney cells, but it synergistically enhanced transcriptional activation by G-kinase I beta. Binding of G-kinase to TFII-I may position the kinase to phosphorylate and regulate TFII-I and/or factors that interact with TFII-I at the serum-response element.

PubMed Disclaimer

Publication types

MeSH terms

LinkOut - more resources