Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Comparative Study
. 2002 Jun 20;21(27):4191-9.
doi: 10.1038/sj.onc.1205596.

Nbs1 promotes ATM dependent phosphorylation events including those required for G1/S arrest

Affiliations
Comparative Study

Nbs1 promotes ATM dependent phosphorylation events including those required for G1/S arrest

Pierre-Marie Girard et al. Oncogene. .

Abstract

Cell lines from Nijmegen Breakage Syndrome (NBS) and ataxia telangiectasia (A-T) patients show defective S phase checkpoint arrest. In contrast, only A-T but not NBS cells are significantly defective in radiation-induced G1/S arrest. Phosphorylation of some ATM substrates has been shown to occur in NBS cells. It has, therefore, been concluded that Nbs1 checkpoint function is S phase specific. Here, we have compared NBS with A-T cell lines (AT-5762ins137) that express a low level of normal ATM protein to evaluate the impact of residual Nbs1 function in NBS cells. The radiation-induced cell cycle response of these NBS and 'leaky' A-T cells is almost identical; normal G2/M arrest after 2 Gy, intermediate G1/S arrest depending on the dose and an A-T-like S phase checkpoint defect. Thus, the checkpoint assays differ in their sensitivity to low ATM activity. Radiation-induced phosphorylation of the ATM-dependent substrates Chk2, RPAp34 and p53-Ser15 are similarly impaired in AT-5762ins137 and NBS cells in a dose dependent manner. In contrast, NBS cells show normal ability to activate ATM kinase following irradiation in vitro and in vivo. We propose that Nbs1 facilitates ATM-dependent phosphorylation of multiple downstream substrates, including those required for G1/S arrest.

PubMed Disclaimer

Similar articles

Cited by

Publication types

MeSH terms