Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2002 Jun;111(6):2771-82.
doi: 10.1121/1.1466869.

Transformation of external-ear spectral cues into perceived delays by the big brown bat, Eptesicus fuscus

Affiliations

Transformation of external-ear spectral cues into perceived delays by the big brown bat, Eptesicus fuscus

James A Simmons et al. J Acoust Soc Am. 2002 Jun.

Abstract

The external-ear transfer function for big brown bats (Eptesicus fuscus) contains two prominent notches that vary from 30 to 55 kHz and from 70 to 100 kHz, respectively, as sound-source elevation moves from -40 to +10 degrees. These notches resemble a higher-frequency version of external-ear cues for vertical localization in humans and other mammals. However, they also resemble interference notches created in echoes when reflected sounds overlap at short time separations of 30-50 micros. Psychophysical experiments have shown that bats actually perceive small time separations from interference notches, and here we used the same technique to test whether external-ear notches are recognized as a corresponding time separation, too. The bats' performance reveals the elevation dependence of a time-separation estimate at 25-45 micros in perceived delay. Convergence of target-shape and external-ear cues onto echo spectra creates ambiguity about whether a particular notch relates to the object or to its location, which the bat could resolve by ignoring the presence of notches at external-ear frequencies. Instead, the bat registers the frequencies of notches caused by the external ear along with notches caused by the target's structure and employs spectrogram correlation and transformation (SCAT) to convert them all into a family of delay estimates that includes elevation.

PubMed Disclaimer

Similar articles

Cited by

Publication types

LinkOut - more resources