Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2001;1(4):295-302.
doi: 10.2165/00129785-200101040-00006.

High throughput genotyping technologies for pharmacogenomics

Affiliations
Review

High throughput genotyping technologies for pharmacogenomics

M D Brennan. Am J Pharmacogenomics. 2001.

Abstract

Genetic differences between individuals play a role in determining susceptibility to diseases as well as in drug response. The challenge today is first to discover the range of genetic variability in the human population and then to define the particular gene variants, or alleles, that contribute to clinically important outcomes. Consequently, high throughput, automated methods are being developed that allow rapid scoring of microsatellite alleles and single nucleotide polymorphisms (SNPs). Many detection technologies are being used to accomplish this goal, including electrophoresis, standard fluorescence, fluorescence polarization, fluorescence resonance energy transfer, and mass spectrometry. SNP alleles may be distinguished by any one of several methods, including single nucleotide primer extension, allele-specific hybridization, allele-specific primer extension, oligonucleotide ligation assay, and invasive signal amplification. Newer methods require less sample manipulation, increase sensitivity, allow more flexibility, and decrease reagent costs. Recent developments show promise for continuing these trends by combining amplification and detection steps and providing flexible, miniaturized platforms for genotyping.

PubMed Disclaimer

Publication types

LinkOut - more resources