Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2002 May;85(5):1103-10.
doi: 10.3168/jds.S0022-0302(02)74171-4.

Regulation of apoptosis during mammary involution by the p53 tumor suppressor gene

Affiliations
Free article
Review

Regulation of apoptosis during mammary involution by the p53 tumor suppressor gene

D J Jerry et al. J Dairy Sci. 2002 May.
Free article

Abstract

Regulation and functions of the p53 tumor suppressor gene have been studied extensively with respect to its critical role in maintaining the stability of genomic DNA following genotoxic insults. However, p53 is also induced by physiologic stimuli resulting in cell cycle arrest and apoptosis. In other situations, the activity of p53 must be repressed to prevent inappropriate removal of cells. The mammary gland provides a valuable system in which to study the mechanisms by which the expression and biological responses to p53 can be regulated under a variety of physiological circumstances. The pro-apoptotic role of p53 in the secretory mammary epithelium may be especially relevant to lactation in livestock. We have utilized p53-deficient mice to establish the molecular targets of p53 in the mammary gland and biological consequences when it is absent. The p21/WAF1 gene (Cdkn1a) is a transcriptional target gene of the p53 protein that responds to elevated levels of p53 during milk stasis providing an endogenous reporter of p53 activity. Abrogation of p53 resulted in delayed involution of the mammary epithelium, demonstrating the physiological role of p53 in regulating involution. Though delayed, stromal proteases were induced in the mammary gland by 5 d postweaning, providing a p53-independent mechanism that resulted in removal of the residual secretory epithelium. These processes can be interrupted by treatment with hydrocortisone. These data establish p53 as a physiological regulator of involution that acts to rapidly initiate apoptosis in the secretory epithelium in response to stress signals, but also indicate the presence of compensatory pathways to effect involution. Additional mechanisms involving intracellular stress signaling pathways (e.g., Stat3) and stromal-mediated pathways have been identified and, together with p53 pathways, may be used to identify animals with greater persistency of lactation.

PubMed Disclaimer

Similar articles

Cited by

Publication types

Substances

LinkOut - more resources