Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2002 Jul 1;33(1):1-14.
doi: 10.1016/s0891-5849(02)00827-4.

Biological consequences of free radical-damaged DNA bases

Affiliations
Review

Biological consequences of free radical-damaged DNA bases

Susan S Wallace. Free Radic Biol Med. .

Abstract

The principal oxidized cytosine bases, uracil glycol, 5-hydroxycytosine, and 5-hydroxyuracil, are readily bypassed, miscode, and are thus important premutagenic lesions. Similarly the principal oxidation product of guanine, 8-oxoguanine, miscodes with A and is a premutagenic lesion. Most of the thymine and adenine products that retain their ring structure primarily pair with their cognate bases and are not potent premutagenic lesions. Although thymine glycol pairs with its cognate base and is not mutagenic it significantly distorts the DNA molecule and is a lethal lesion. Ring fragmentation, ring contraction, and ring open products of both pyrimidines and purines block DNA polymerases and are potentially lethal lesions. Although these breakdown products have the potential to mispair during translesion synthesis, the mutational spectra of prokaryotic mutants defective in the pyrimidine-specific and/or purine-specific DNA glycosylases do not reflect that expected of the breakdown products. Taken together, the data suggest that the principal biological consequences of endogenously produced and unrepaired free radical-damaged DNA bases are mutations.

PubMed Disclaimer

Similar articles

Cited by

Publication types

LinkOut - more resources