Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2002 Mar;1(2):145-55.
doi: 10.1016/s1535-6108(02)00035-1.

ITF-2, a downstream target of the Wnt/TCF pathway, is activated in human cancers with beta-catenin defects and promotes neoplastic transformation

Affiliations
Free article

ITF-2, a downstream target of the Wnt/TCF pathway, is activated in human cancers with beta-catenin defects and promotes neoplastic transformation

Frank T Kolligs et al. Cancer Cell. 2002 Mar.
Free article

Abstract

In many cancers, inactivation of the adenomatous polyposis coli (APC) or Axin tumor suppressor proteins or activating mutations in beta-catenin lead to elevated beta-catenin levels, enhanced binding of beta-catenin to T cell factor (TCF) proteins, and increased expression of TCF-regulated genes. We found that the gene for the basic helix-loop-helix transcription factor ITF-2 (immunoglobulin transcription factor-2) was activated in rat E1A-immortalized RK3E cells following neoplastic transformation by beta-catenin or ligand-induced activation of a beta-catenin-estrogen receptor fusion protein. Human cancers with beta-catenin regulatory defects had elevated ITF-2 expression, and ITF-2 was repressed by restoring wild-type APC function or inhibiting TCF activity. Of note, ITF-2 promoted neoplastic transformation of RK3E cells. We propose that ITF-2 is a TCF-regulated gene, which functions in concert with other TCF target genes to promote growth and/or survival of cancer cells with defects in beta-catenin regulation.

PubMed Disclaimer

Similar articles

Cited by

Publication types

MeSH terms

LinkOut - more resources