Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2002 Jul 1:7:d1609-23.
doi: 10.2741/A865. Epub 2002 Jul 1.

The role of vascular growth factors in hyperoxia-induced injury to the developing lung

Affiliations
Review

The role of vascular growth factors in hyperoxia-induced injury to the developing lung

Carl T D'Angio et al. Front Biosci. .

Abstract

Normal pulmonary vascular development is the result of a complex interplay of growth factors, including vascular endothelial growth factor (VEGF) and the angiopoietins. Injury to the developing lung, whether due to hyperoxia or mechanical ventilation, results in disordered vascular development, ranging from an apparent arrest of microvascular development in milder injury to extensive microvascular derangement in more severe injury. Alterations in vascular growth factors may participate in these injuries. During injury to the developing animal lung, VEGF abundance is markedly decreased. In models of post-injury recovery, up-regulation of VEGF accompanies the re-establishment of normal vasculature. Alterations in lung VEGF levels in human premature infants are less clear cut. However, among humans premature newborns who later go on to develop bronchopulmonary dysplasia (BPD), VEGF production is decreased in comparison to those newborns who recover. Other angiogenic factors, such as the CXC ELR+ chemokines, are also altered in injury to the developing lung, but their specific roles in vascular injury are less clear. Strategies that enhance microvascular integrity, whether through attenuating alterations in vascular growth factors or by other means, also improve the outcome of lung injury. Such therapies may eventually offer hope in human BPD.

PubMed Disclaimer

Similar articles

Cited by

Publication types

MeSH terms

LinkOut - more resources