Gene silencing using micro-RNA designed hairpins
- PMID: 12088155
- PMCID: PMC1370301
- DOI: 10.1017/s1355838202024032
Gene silencing using micro-RNA designed hairpins
Abstract
During RNA interference (RNAi), long dsRNA is processed to approximately 21 nt duplexes, short interfering RNAs (siRNAs), which silence genes through a mRNA degradation pathway. Small temporal RNAs (stRNAs) and micro-RNAs (miRNAs) are approximately 21 nt RNAs that are processed from endogenously encoded hairpin-structured precursors, and function to silence genes via translational repression. Here we report that synthetic hairpin RNAs that mimic siRNAs and miRNA precursor molecules can target a gene for silencing, and the mechanism of silencing appears to be through mRNA degradation and not translational repression. The sequence and structural configuration of these RNAs are important, and even slight modification in structure can affect the silencing activity of the hairpins. Furthermore, these RNAs are active when expressed by DNA vectors containing polymerase III promoters, opening the possibility for new approaches in stable RNAi-based loss of function studies.
References
Publication types
MeSH terms
Substances
Grants and funding
LinkOut - more resources
Full Text Sources
Other Literature Sources
Research Materials