Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2002 Jun 28;192(1-2):27-36.
doi: 10.1016/s0303-7207(02)00115-6.

Mechanisms of bradykinin-induced glucagon release in clonal alpha-cells In-R1-G9: involvement of Ca(2+)-dependent and -independent pathways

Affiliations

Mechanisms of bradykinin-induced glucagon release in clonal alpha-cells In-R1-G9: involvement of Ca(2+)-dependent and -independent pathways

S Yibchok-anun et al. Mol Cell Endocrinol. .

Abstract

The mechanisms by which bradykinin (BK) increases glucagon release were investigated. BK (0.1-10 microM) increased [Ca(2+)](i) and glucagon release in clonal alpha-cells In-R1-G9. BK-induced glucagon release was lower in the absence than in the presence of extracellular Ca(2+), but it still increased glucagon release while [Ca(2+)](i) was stringently deprived. Depletion of intracellular Ca(2+) store with thapsigargin abolished both the BK-induced Ca(2+) peak and sustained plateau. Microinjection of heparin abolished BK-induced Ca(2+) release. Pertussis toxin (PTX) did not block BK-induced [Ca(2+)](i) increase or glucagon release. U-73122 (8 microM), a phospholipase C (PLC) inhibitor, abolished BK-induced increases in [Ca(2+)](i), but only reduced BK-induced glucagon release by 40%. A phospholipase D (PLD) inhibitor zLYCK reduced BK-induced glucagon release by 60%. The combination of U-73122 and zLYCK abolished BK-induced glucagon release. Both SK&F 96365, a receptor-operated Ca(2+) channel (ROC) blocker and nimodipine, an L-type Ca(2+) channel blocker, reduced BK-induced [Ca(2+)](i) increase and glucagon release. These findings suggest that BK increase glucagon release through a PTX-insensitive G protein and both Ca(2+)-dependent and -independent pathways. The Ca(2+)-dependent pathway is attributable to PLC activation. PLC catalyzes IP(3) formation, inducing Ca(2+) release from the endoplasmic reticulum, which, in turn, triggers Ca(2+) influx via both ROCs and L-type channels. PLD activation may be involved in Ca(2+)-dependent and/or -independent pathway.

PubMed Disclaimer

Similar articles

Cited by

Publication types

MeSH terms

Substances

LinkOut - more resources