Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2002 Jul;13(7):1788-94.
doi: 10.1097/01.asn.0000019781.90630.0f.

Impaired regulation of renal oxygen consumption in spontaneously hypertensive rats

Affiliations

Impaired regulation of renal oxygen consumption in spontaneously hypertensive rats

Stephen Adler et al. J Am Soc Nephrol. 2002 Jul.

Abstract

Abnormalities of nitric oxide (NO) and oxygen radical synthesis and of oxygen consumption have been described in the spontaneously hypertensive rat (SHR) and may contribute to the pathogenesis of hypertension. NO plays a role in the regulation of renal oxygen consumption in normal kidney, so the response of renal cortical oxygen consumption to stimulators of NO production before and after the addition of the superoxide scavenging agent tempol (4-hydroxy-2,2,6,6-tetramethyl piperidine-1-oxyl) was studied. Baseline cortical oxygen consumption was similar in SHR and Wistar-Kyoto (WKY) rats (SHR: 600 +/- 55 nmol O(2)/min per g, WKY: 611 +/- 51 nmol O(2)/min per g, P > 0.05). Addition of bradykinin, enalaprilat, and amlodipine decreased oxygen consumption significantly less in SHR than WKY (SHR: bradykinin -13.9 +/- 1.9%, enalaprilat -15.3 +/- 1.6%, amlodipine -11.9 +/- 0.7%; WKY: bradykinin -22.8 +/- 1.0%, enalaprilat -24.1 +/- 2.0%, amlodipine -20.7 +/- 2.3%; P < 0.05), consistent with less NO effect in SHR. Addition of tempol reversed the defects in responsiveness to enalaprilat and amlodipine, suggesting that inactivation of NO by superoxide contributes to decreased NO availability. The response to an NO donor was similar in both groups and was unaffected by the addition of tempol. These results demonstrate that NO availability in the kidney is decreased in SHR, resulting in increased oxygen consumption. This effect is due to enhanced production of superoxide in SHR. By lowering intrarenal oxygen levels, reduced NO may contribute to susceptibility to injury and renal fibrosis. Increasing NO production, decreasing oxidant stress, or both might prevent these changes by improving renal oxygenation.

PubMed Disclaimer

Publication types

MeSH terms

LinkOut - more resources