Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2002 May;66(5):1022-31.
doi: 10.1271/bbb.66.1022.

Purification, molecular cloning, and characterization of pyridoxine 4-oxidase from Microbacterium luteolum

Affiliations
Free article

Purification, molecular cloning, and characterization of pyridoxine 4-oxidase from Microbacterium luteolum

Yasuo Kaneda et al. Biosci Biotechnol Biochem. 2002 May.
Free article

Abstract

Pyridoxine 4-oxidase (EC 1.1.3.12, PN 4-oxidase), which catalyzes the oxidation of PN by oxygen or other hydrogen acceptors to form pyridoxal and hydrogen peroxide or reduced forms of the acceptors, respectively, was purified for the first time to homogeneity from Microbacterium luteolum YK-1 (=Aureobacterium luteolum YK-1). The purified enzyme required FAD for its catalytic activity and stability. The enzyme was a monomeric protein with the subunit molecular mass of 53,000 +/- 1,000 Da. PN was the only substrate as the hydrogen donor. Oxygen, 2,6-dichloroindophenol, and vitamin K3 were good substrates as the hydrogen acceptor. The gene (pno) encoding PN 4-oxidase was cloned. The gene encodes a protein of 507 amino acid residues corresponding to the molecular mass of the subunit. PN 4-oxidase was expressed in Escherichia coli and found to have the same properties as the native enzyme from M. luteolum YK-1. Comparisons of primary and secondary structures with other proteins showed that the enzyme belongs to the GMC oxidoreductase family. M. luteolum YK-1 has four plasmids. The pno gene was found on a chromosomal DNA. Search for genes similar in sequence in other organisms suggested that a nitrogen-fixing symbiotic bacterium, Mesorhizobium loti, which harbors two plasmids, has a PN degradation pathway I in chromosomal DNA.

PubMed Disclaimer

MeSH terms

Substances

Associated data