Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2002 Jun;20(2):323-9.
doi: 10.1006/mcne.2002.1100.

Homer-dependent cell surface expression of metabotropic glutamate receptor type 5 in neurons

Affiliations

Homer-dependent cell surface expression of metabotropic glutamate receptor type 5 in neurons

Fabrice Ango et al. Mol Cell Neurosci. 2002 Jun.

Abstract

The metabotropic glutamate (mGlu) receptors are a family of receptors involved in the tuning of fast excitatory synaptic transmission in the brain. Experiments performed in heterologous expression systems suggest that cell surface expression of group I mGlu receptors is controlled by their auxiliary protein, Homer. However, whether or not this also applies to neurons remains controversial. Here we show that in cultured cerebellar granule cells, the group I mGlu receptor subtype, mGlu5, transfected alone is functionally expressed at the surface of these neurons. Transfected Homer1b caused intracellular retention and clustering of this receptor at synaptic sites. Recombinant Homer1a alone did not affect cell surface expression of the receptor, but in neurons transfected with Homer1b, excitation-induced expression of native Homer1a reversed the intracellular retention of mGlu5 receptors, resulting in the receptor trafficking to synaptic membranes. Transfected Homer1a also increased the latency and amplitude of the mGlu5 receptor Ca2+ response. These results indicate that Homer1 proteins regulate synaptic cycling and Ca2+ signaling of mGlu5 receptors, in response to neuronal activity.

PubMed Disclaimer

Publication types

MeSH terms

LinkOut - more resources