Intravenous ribavirin treatment for severe adenovirus disease in immunocompromised children
- PMID: 12093990
- DOI: 10.1542/peds.110.1.e9
Intravenous ribavirin treatment for severe adenovirus disease in immunocompromised children
Abstract
Background: Adenovirus is an important cause of morbidity and mortality in the immunocompromised host. The incidence of severe adenovirus disease in pediatrics is increasing in association with growing numbers of immunocompromised children, where case fatality rates as high as 50% to 80% have been reported. There are no approved antiviral agents with proven efficacy for the treatment of severe adenovirus disease, nor are there any prospective randomized, controlled trials of potentially useful anti-adenovirus therapies. Apparent clinical success in the treatment of severe adenovirus disease is limited to a few case reports and small series. Experience is greatest with intravenous ribavirin and cidofovir. Ribavirin, a guanosine analogue, has broad antiviral activity against both RNA and DNA viruses, including documented activity against adenovirus in vitro. Ribavirin is licensed in aerosol form for the treatment of respiratory syncytial virus infection, and orally in combination with interferon to treat hepatitis C. Intravenous ribavirin is the treatment of choice for infection with hemorrhagic fever viruses. The most common adverse effect of intravenous ribavirin is reversible mild anemia. The use of cidofovir in severe adenovirus infection has been limited by adverse effects, the most significant of which is nephrotoxicity.
Objective: We report our experience with intravenous ribavirin therapy for severe adenovirus disease in a series of immunocompromised children and review the literature.
Design/methods: We retrospectively reviewed the medical records of 5 children treated with intravenous ribavirin for documented severe adenovirus disease. Two patients developed adenovirus hemorrhagic cystitis after cardiac and bone marrow transplants, respectively. The bone marrow transplant patient also received intravenous cidofovir for progressive disseminated disease. An additional 3 children developed adenovirus pneumonia; 2 were neonates, 1 of whom had partial DiGeorge syndrome. The remaining infant had recently undergone a cardiac transplant. Intravenous ribavirin was administered on a compassionate-use protocol.
Results: Complete clinical recovery followed later by viral clearance was observed in 2 children: the cardiac transplant recipient with adenovirus hemorrhagic cystitis and the immunocompetent neonate with adenovirus pneumonia. The remaining 3 children died of adenovirus disease. Intravenous ribavirin therapy was well tolerated. Use of cidofovir in 1 child was associated with progressive renal failure and neutropenia.
Discussion: Our series of patients is representative of the spectrum of immunocompromised children at greatest risk for severe adenovirus disease, namely solid-organ and bone marrow transplant recipients, neonates, and children with immunodeficiency. Although intravenous ribavirin was not effective for all children with severe adenovirus disease in this series or in the literature, therapy is unlikely to be of benefit if begun late in the course of the infection. Early identification, eg by polymerase chain reaction of those patients at risk of disseminated adenovirus disease may permit earlier antiviral treatment and better evaluation of therapeutic response.
Conclusions: Two of 5 children with severe adenovirus disease treated with intravenous ribavirin recovered. The availability of newer rapid diagnostic techniques, such as polymerase chain reaction, may make earlier, more effective treatment of adenovirus infection possible. Given the seriousness and increasing prevalence of adenovirus disease in certain hosts, especially children, a large, multicenter clinical trial of potentially useful anti-adenoviral therapies, such as intravenous ribavirin, is clearly required to demonstrate the most effective and least toxic therapy.
Similar articles
-
Intravenous palivizumab and ribavirin combination for respiratory syncytial virus disease in high-risk pediatric patients.Pediatr Infect Dis J. 2007 Dec;26(12):1089-93. doi: 10.1097/INF.0b013e3181343b7e. Pediatr Infect Dis J. 2007. PMID: 18043443
-
Oral ribavirin therapy for respiratory syncytial virus infections in moderately to severely immunocompromised patients.Transpl Infect Dis. 2014 Apr;16(2):242-50. doi: 10.1111/tid.12194. Epub 2014 Mar 13. Transpl Infect Dis. 2014. PMID: 24621016
-
Intravenous Cidofovir therapy for disseminated adenovirus in a pediatric liver transplant recipient.Transplantation. 2002 Oct 15;74(7):1050-2. doi: 10.1097/00007890-200210150-00027. Transplantation. 2002. PMID: 12394854
-
What do we know about adenovirus in renal transplantation?Nephrol Dial Transplant. 2013 Aug;28(8):2003-10. doi: 10.1093/ndt/gft036. Epub 2013 Mar 13. Nephrol Dial Transplant. 2013. PMID: 23493328 Review.
-
Respiratory syncytial virus and parainfluenza virus infections in the immunocompromised host.Semin Respir Infect. 1995 Dec;10(4):224-31. Semin Respir Infect. 1995. PMID: 8668850 Review.
Cited by
-
Combined intravenous ribavirin and recombinant human interferon α1b aerosol inhalation for adenovirus pneumonia with plastic bronchitis in children: a case report and review of literature.Front Pediatr. 2024 Feb 6;12:1295133. doi: 10.3389/fped.2024.1295133. eCollection 2024. Front Pediatr. 2024. PMID: 38379910 Free PMC article.
-
Epidemiology, clinical presentation and respiratory sequelae of adenovirus pneumonia in children in Kuala Lumpur, Malaysia.PLoS One. 2018 Oct 15;13(10):e0205795. doi: 10.1371/journal.pone.0205795. eCollection 2018. PLoS One. 2018. PMID: 30321228 Free PMC article.
-
Metabolic Modifications by Common Respiratory Viruses and Their Potential as New Antiviral Targets.Viruses. 2021 Oct 14;13(10):2068. doi: 10.3390/v13102068. Viruses. 2021. PMID: 34696497 Free PMC article. Review.
-
Antiadenovirus activities of several classes of nucleoside and nucleotide analogues.Antimicrob Agents Chemother. 2005 Mar;49(3):1010-6. doi: 10.1128/AAC.49.3.1010-1016.2005. Antimicrob Agents Chemother. 2005. PMID: 15728896 Free PMC article.
-
Fatal adenovirus pneumonia in a 15-day-old infant despite extracorporeal life support treatment: A case report.Med Int (Lond). 2022 Apr 26;2(3):15. doi: 10.3892/mi.2022.40. eCollection 2022 May-Jun. Med Int (Lond). 2022. PMID: 36698502 Free PMC article.
Publication types
MeSH terms
Substances
LinkOut - more resources
Full Text Sources