Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2002 Jul 19;320(4):899-908.
doi: 10.1016/S0022-2836(02)00539-9.

Crystal structure of a transcarbamylase-like protein from the anaerobic bacterium Bacteroides fragilis at 2.0 A resolution

Affiliations

Crystal structure of a transcarbamylase-like protein from the anaerobic bacterium Bacteroides fragilis at 2.0 A resolution

Dashuang Shi et al. J Mol Biol. .

Abstract

A transcarbamylase-like protein essential for arginine biosynthesis in the anaerobic bacterium Bacteroides fragilis has been purified and crystallized in space group P4(3)2(1)2 (a=b=153.4 A, c=94.8 A). The structure was solved using a single isomorphous replacement with anomalous scattering (SIRAS) and was refined at 2.0 A resolution to an R-factor of 20.6% (R-free=25.2%). The molecular model is trimeric and comprises 960 amino acid residues, two phosphate groups and 422 water molecules. The monomer has the consensus transcarbamylase fold with two structural domains linked by two long interdomain helices: the putative carbamoyl phosphate-binding domain and a binding domain for the second substrate. Each domain has a central parallel beta-sheet surrounded by alpha-helices and loops with alpha/beta topology. The putative carbamoyl phosphate-binding site is similar to those in ornithine transcarbamylases (OTCases) and aspartate transcarbamylases (ATCases); however, the second substrate-binding site is strikingly different. This site has several insertions and deletions, and residues critical to substrate binding and catalysis in other known transcarbamylases are not conserved. The three-dimensional structure and the fact that this protein is essential for arginine biosynthesis suggest strongly that it is a new member of the transcarbamylase family. A similar protein has been found in Xylella fastidiosa, a bacterium that infects grapes, citrus and other plants.

PubMed Disclaimer

Publication types

Substances

Associated data

LinkOut - more resources