Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2002 Jul;78(1):144-7.
doi: 10.1016/s0015-0282(02)03146-1.

Hypoxia-induced irreversible up-regulation of type I collagen and transforming growth factor-beta1 in human peritoneal fibroblasts

Affiliations
Free article

Hypoxia-induced irreversible up-regulation of type I collagen and transforming growth factor-beta1 in human peritoneal fibroblasts

Ghassan M Saed et al. Fertil Steril. 2002 Jul.
Free article

Abstract

Objective: To determine whether restoration of normoxia after a hypoxic insult returns the molecular expression of type I collagen and TGF-beta1 to baseline levels.

Design: Prospective experimental study.

Setting: University medical center.

Patient(s): Primary cultures of fibroblasts established from peritoneal tissues of five patients.

Intervention(s): Hypoxia treatment of the primary cultured fibroblasts.

Main outcome measure(s): Cultured human peritoneal fibroblasts (HPF) were maintained under hypoxic conditions (2% oxygen) for 24 hours and then transferred into normal culture conditions (normoxia) for another 24 hours. Total cellular RNA from cells was collected and subjected to multiplex reverse transcription polymerase chain reaction to quantitate type I collagen and transforming growth factor (TGF)-beta1 mRNA levels in response to these treatments.

Result(s): Hypoxia treatment resulted in 30% and 50% increases in type I collagen and TGF-beta1 expression, respectively. Restoration of normoxia after hypoxia treatment failed to restore type I collagen and TGF-beta1 expression to their baseline levels.

Conclusion(s): These data support the hypothesis that hypoxia induces irreversible molecular changes in peritoneal fibroblasts that produce a phenotype that increases extracellular matrix expression and thereby would promote adhesion development. Thus once a phenotype consistent with increased adhesion development is manifested, restoration of oxygen supply does not reverse the stimulation of HPF type I collagen and TGF-beta1 expression. This observation may in part explain the clinical observation that adhesion reformation is more difficult to prevent than de novo adhesion formation.

PubMed Disclaimer

Similar articles

Cited by

Publication types

MeSH terms

LinkOut - more resources