Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2002 Aug 23;277(34):30421-4.
doi: 10.1074/jbc.C200366200. Epub 2002 Jul 3.

Disruptor of telomeric silencing-1 is a chromatin-specific histone H3 methyltransferase

Affiliations
Free article

Disruptor of telomeric silencing-1 is a chromatin-specific histone H3 methyltransferase

Nicolas Lacoste et al. J Biol Chem. .
Free article

Abstract

Yeast disruptor of telomeric silencing-1 (DOT1) is involved in gene silencing and in the pachytene checkpoint during meiotic cell cycle. Here we show that the Dot1 protein possesses intrinsic histone methyltransferase (HMT) activity. When compared with Rmt1, another putative yeast HMT, Dot1 shows very distinct substrate specificity. While Rmt1 methylates histone H4, Dot1 targets histone H3. In contrast to Rmt1, which can only modify free histones, Dot1 activity is specific to nucleosomal substrates. This was also confirmed using native chromatin purified from yeast cells. We also demonstrate that, like its mammalian homolog PRMT1, Rmt1 specifically dimethylates an arginine residue at position 3 of histone H4 N-terminal tail. In surprising contrast, methylation by Dot1 occurs in the globular domain of nucleosomal histone H3. Matrix-assisted laser desorption ionization time-of-flight (MALDI-TOF) analysis suggests that H3 lysine 79 is trimethylated by Dot1. The intrinsic nucleosomal histone H3 methyltransferase activity of Dot1 is certainly a key aspect of its function in gene silencing at telomeres, most likely by directly modulating chromatin structure and Sir protein localization. In agreement with a role in regulating localization of histone deacetylase complexes like SIR, an increase of bulk histone acetylation is detected in dot1- cells.

PubMed Disclaimer

Publication types