Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Comparative Study
. 2002 Jul 15;169(2):1007-13.
doi: 10.4049/jimmunol.169.2.1007.

Intercellular adhesion molecule (ICAM)-1, but not ICAM-2, activates RhoA and stimulates c-fos and rhoA transcription in endothelial cells

Affiliations
Comparative Study

Intercellular adhesion molecule (ICAM)-1, but not ICAM-2, activates RhoA and stimulates c-fos and rhoA transcription in endothelial cells

Paul W Thompson et al. J Immunol. .

Abstract

ICAM-1 and -2 are integrin-binding Ig superfamily adhesion molecules that are important for leukocyte transmigration across endothelial monolayers. ICAM-1 cross-linking is known to activate the small GTPase RhoA and induce stress fiber formation in endothelial cells, but ICAM-2 signaling has not been investigated. In this study, we compare ICAM-1 and ICAM-2 signaling and localization in HUVECs. Although ICAM-1 and ICAM-2 both localize with the actin-binding protein moesin in apical microvilli, only ICAM-1 colocalizes with moesin after cross-linking. Unlike ICAM-1, ICAM-2 does not activate RhoA or alter actin cytoskeletal organization. Interestingly, ICAM-1 stimulates transcription of c-fos, a known early response gene. In addition, it up-regulates rhoA expression, suggesting that it activates a positive feedback pathway after RhoA activation. These results indicate that in endothelial cells, ICAM-1, but not ICAM-2, rapidly stimulates signaling responses involving RhoA.

PubMed Disclaimer

Publication types

MeSH terms

LinkOut - more resources