Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2002 Aug 19;1564(1):66-72.
doi: 10.1016/s0005-2736(02)00402-9.

Cubic phase is induced by cholesterol in the dispersion of 1-palmitoyl-2-oleoyl-phosphatidylethanolamine

Affiliations

Cubic phase is induced by cholesterol in the dispersion of 1-palmitoyl-2-oleoyl-phosphatidylethanolamine

Xiaoyuan Wang et al. Biochim Biophys Acta. .

Abstract

The effect of cholesterol, a major constituent of eukaryotic cell membranes, on the structure and thermotropic phase behaviour of 1-palmitoyl-2-oleoyl-phosphatidylethanolamine (POPE) dispersed in excess water was examined by synchrotron X-ray diffraction methods. Temperature scans over the range 10-75 degrees C showed that the gel to liquid-crystalline phase transition decreased from 25 to 10 degrees C in the presence of 20 mol% cholesterol, and no gel phase could be detected in the wide-angle X-ray scattering (WAXS) intensity profile of mixtures containing 35 mol% cholesterol. The small-angle X-ray scattering (SAXS) intensity profiles showed that the lamellar to nonlamellar phase transition temperature was also decreased in mixtures containing up to 30 mol% cholesterol but the trend was reversed in mixtures containing a higher proportion of cholesterol. There was evidence that the transition of the lamellar liquid-crystal phase is to cubic phases in mixtures containing less than 30 mol% cholesterol. The space group of one of these cubic phases was assigned as Pn3m. This effect of cholesterol on non-bilayer-forming phospholipids is considered in the context of the role of cholesterol in membrane organization and function.

PubMed Disclaimer

Publication types