Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2002 Aug 19;1564(1):114-22.
doi: 10.1016/s0005-2736(02)00408-x.

Molecular analysis of the mechanism of potassium uptake through the TRK1 transporter of Saccharomyces cerevisiae

Affiliations
Free article

Molecular analysis of the mechanism of potassium uptake through the TRK1 transporter of Saccharomyces cerevisiae

Rosario Haro et al. Biochim Biophys Acta. .
Free article

Abstract

The TRK-HKT family of K(+) transporters mediates K(+) and Na(+) uptake in fungi and plants. In this study, we have investigated the molecular mechanism involved in the movement of alkali cations through the TRK1 transporter of Saccharomyces cerevisiae. The model that best explains the activity of ScTRK1 is a cotransport of two K(+) or Rb(+), both of which bind the two binding sites of ScTRK1 with very high affinities in K(+)-starved cells. Na(+) can be transported in the same way but it exhibits a much lower affinity for the second binding site. Therefore, only at critical concentration ratios between K(+) and Na(+), or Rb(+) and Na(+), the transporter takes up Na(+) together with K(+) or Rb(+). Mutation analyses suggest that the two binding sites are located in the P fragment of the first MPM motif of the transporter, and that Gln(90) is involved in these binding sites. ScTRK1 can be in two states, medium or high affinity, and we have found that Leu(949) is involved in the oscillation of the transporter between these two states. ScTRK1 mediates active K(+) uptake. This is not Na(+)-coupled and direct coupling of ScTRK1 to a source of chemical energy seems more probable than K(+)-H(+) cotransport.

PubMed Disclaimer

Similar articles

Cited by

Publication types

MeSH terms

LinkOut - more resources