Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2002 Jul 12;277(28):25385-92.
doi: 10.1074/jbc.M203630200. Epub 2002 May 6.

Cytosolic phospholipase A2 (cPLA2) regulation of human monocyte NADPH oxidase activity. cPLA2 affects translocation but not phosphorylation of p67(phox) and p47(phox)

Affiliations
Free article

Cytosolic phospholipase A2 (cPLA2) regulation of human monocyte NADPH oxidase activity. cPLA2 affects translocation but not phosphorylation of p67(phox) and p47(phox)

Xiaoxian Zhao et al. J Biol Chem. .
Free article

Abstract

The NADPH oxidase of human monocytes is activated upon exposure to opsonized zymosan and a variety of other stimuli to catalyze the formation of superoxide anion. Assembly of the NADPH oxidase complex is believed to be a highly regulated process, and molecular mechanisms responsible for this regulation have yet to be fully elucidated. We have previously reported that cytosolic phospholipase A(2) (cPLA(2)) expression and activity are essential for superoxide anion production in activated human monocytes. In this study, we investigated the mechanisms involved in cPLA(2) regulation of NADPH oxidase activation by evaluating the effects of cPLA(2) on translocation and phosphorylation of p67(phox) and p47(phox). We report that translocation and phosphorylation of p67(phox), as well as p47(phox), occur upon activation of human monocytes and that decreased cPLA(2) protein expression, mediated by antisense oligodeoxyribonucleotides (AS-ODN) specific for cPLA(2) mRNA, blocked the stimulation-induced translocation of p47(phox) and p67(phox) from the cytosol to the membrane fraction. Inhibition of translocation of both p47(phox) and p67(phox) by cPLA(2) AS-ODN was above 85%. Arachidonic acid (AA), a product of cPLA(2) enzymatic activity, completely restored translocation of both of these oxidase components in the AS-ODN-treated, cPLA(2)-deficient human monocytes. These results represent the first report that cPLA(2) activity or AA is required for p67(phox) and p47(phox) translocation in human monocytes. Although cPLA(2) was required for translocation of p47(phox) and p67(phox), it did not influence phosphorylation of these components. These results suggest that one mechanism of cPLA(2) regulation of NADPH oxidase activity is to control the arachidonate-sensitive assembly of the complete oxidase complex through modulating the translocation of both p47(phox) and p67(phox). These studies provide insight into the mechanisms by which activation signals are transduced to allow the induction of superoxide anion production in human monocytes.

PubMed Disclaimer

Similar articles

Cited by

Publication types

LinkOut - more resources