Sensory-to-motor processing of the ocular-following response
- PMID: 12103438
- DOI: 10.1016/s0168-0102(02)00044-5
Sensory-to-motor processing of the ocular-following response
Abstract
The ocular-following response is a slow tracking eye movement that is elicited by sudden drifting movements of a large-field visual stimulus in primates. It helps to stabilize the eyes on the visual scene. Previous single unit recordings and chemical lesion studies have reported that the ocular-following response is mediated by a pathway that includes the medial superior temporal (MST) area of the cortex and the ventral paraflocculus (VPFL) of the cerebellum. Using a linear regression model, we systematically analyzed the quantitative relationships between the complex temporal patterns of neural activity at each level with sensory input and motor output signals (acceleration, velocity, and position) during ocular-following. The results revealed the following: (1) the temporal firing pattern of the MST neurons locally encodes the dynamic properties of the visual stimulus within a limited range. On the other hand, (2) the temporal firing pattern of the Purkinje cells in the cerebellum globally encodes almost the entire motor command for the ocular-following response. We conclude that the cerebellum is the major site of the sensory-to-motor transformation necessary for ocular-following, where population coding is integrated into rate coding.
Similar articles
-
Change in neuronal firing patterns in the process of motor command generation for the ocular following response.J Neurophysiol. 2001 Oct;86(4):1750-63. doi: 10.1152/jn.2001.86.4.1750. J Neurophysiol. 2001. PMID: 11600636
-
Inverse-dynamics model eye movement control by Purkinje cells in the cerebellum.Nature. 1993 Sep 2;365(6441):50-2. doi: 10.1038/365050a0. Nature. 1993. PMID: 8361536
-
Temporal firing patterns of Purkinje cells in the cerebellar ventral paraflocculus during ocular following responses in monkeys I. Simple spikes.J Neurophysiol. 1998 Aug;80(2):818-31. doi: 10.1152/jn.1998.80.2.818. J Neurophysiol. 1998. PMID: 9705471
-
Translation of sensory signals into commands for control of saccadic eye movements: role of primate superior colliculus.Physiol Rev. 1986 Jan;66(1):118-71. doi: 10.1152/physrev.1986.66.1.118. Physiol Rev. 1986. PMID: 3511480 Review.
-
The cerebellum, predictive control and motor coordination.Novartis Found Symp. 1998;218:272-84; discussion 284-90. doi: 10.1002/9780470515563.ch15. Novartis Found Symp. 1998. PMID: 9949826 Review.
Cited by
-
Impact of Transcranial Direct Current Stimulation (tDCS) on Neuronal Functions.Front Neurosci. 2016 Nov 30;10:550. doi: 10.3389/fnins.2016.00550. eCollection 2016. Front Neurosci. 2016. PMID: 27965533 Free PMC article. Review.
-
Suppression and Contrast Normalization in Motion Processing.J Neurosci. 2017 Nov 8;37(45):11051-11066. doi: 10.1523/JNEUROSCI.1572-17.2017. Epub 2017 Oct 10. J Neurosci. 2017. PMID: 29018158 Free PMC article.
-
Smooth pursuit-related information processing in frontal eye field neurons that project to the NRTP.Cereb Cortex. 2009 May;19(5):1186-97. doi: 10.1093/cercor/bhn166. Epub 2008 Sep 26. Cereb Cortex. 2009. PMID: 18820288 Free PMC article.
-
Binocular Summation for Reflexive Eye Movements: A Potential Diagnostic Tool for Stereodeficiencies.Invest Ophthalmol Vis Sci. 2018 Dec 3;59(15):5816-5822. doi: 10.1167/iovs.18-24520. Invest Ophthalmol Vis Sci. 2018. PMID: 30521669 Free PMC article.
-
The effects of prolonged viewing of motion on short-latency ocular following responses.Exp Brain Res. 2009 May;195(2):195-205. doi: 10.1007/s00221-009-1768-7. Epub 2009 Mar 24. Exp Brain Res. 2009. PMID: 19308363
Publication types
MeSH terms
LinkOut - more resources
Full Text Sources