Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2002 Aug 30;277(35):32268-73.
doi: 10.1074/jbc.M202105200. Epub 2002 Jun 24.

M phase-specific expression and phosphorylation-dependent ubiquitination of the ClC-2 channel

Affiliations
Free article

M phase-specific expression and phosphorylation-dependent ubiquitination of the ClC-2 channel

Ya-Juan Zheng et al. J Biol Chem. .
Free article

Abstract

Cl(-) channel activities vary during the cell cycle and are thought to play various roles including regulation of cell volume. We have shown previously that ClC-2 channels are directly phosphorylated and functionally regulated by the M phase-specific cyclin-dependent kinase p34(cdc2)/cyclin B. We investigate here to determine whether the expression levels of ClC-2 channel protein vary during the cell cycle. Immunoblot and immunocytochemical analyses of cells cycle-synchronized by serum depletion/replenishment reveal that ClC-2 channel protein is expressed predominantly at M phase in cells with two nuclei and a clear constriction ring, whereas RNA blot analysis shows that ClC-2 mRNA expression does not change during the cell cycle. Ubiquitin assays reveal that the ClC-2 channels are ubiquitinated at M phase, whereas the magnitude of ubiquitination is suppressed by incubation with olomoucine, an inhibitor of p34(cdc2)/cyclin B, and it is almost completely abolished in ClC-2 channels having an S632A mutation, which cannot be phosphorylated by p34(cdc2)/cyclin B, indicating that ubiquitination of ClC-2 channels requires phosphorylation by M phase-specific p34(cdc2)/cyclin B. Regulation at the post-transcriptional level, including phosphorylation-dependent ubiquitination, may contribute to M phase-specific expression of ClC-2 channels. Cell cycle-dependent regulation of expression at the protein level in addition to the regulation of function suggests that the ClC-2 channel plays a physiological role in the cell cycle.

PubMed Disclaimer

Publication types

MeSH terms

LinkOut - more resources