Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1992;4(8):708-722.
doi: 10.1111/j.1460-9568.1992.tb00180.x.

Different Types of Potassium Outward Current in Relay Neurons Acutely Isolated from the Rat Lateral Geniculate Nucleus

Affiliations

Different Types of Potassium Outward Current in Relay Neurons Acutely Isolated from the Rat Lateral Geniculate Nucleus

Thomas Budde et al. Eur J Neurosci. 1992.

Abstract

Different classes of potassium (K+) outward current activated by depolarization were characterized in relay neurons acutely isolated from the rat lateral geniculate nucleus (LGN), using the whole-cell version of the patch-clamp technique. A fast-transient current (IA), activated at around - 70 mV, declined rapidly with a voltage-dependent time constant (tau=6 ms at + 45 mV), was 50% steady-state inactivated at - 70 mV, and rapidly recovered from inactivation with a monoexponential time course (tau=21 ms). IA was blocked by 4-aminopyridine (4-AP, 2 - 8 mM) and was relatively insensitive to tetraethylammonium (TEA, 2 - 10 mM). After elimination of IA by a conditioning prepulse (30 ms to - 50 mV), a slow-transient K+ current could be studied in isolation, and was separated into three components, IKm, IKs and a calcium (Ca2+)-dependent current, IK[Ca]. The slow-transient current was not consistently affected by 4-AP (up to 8 mM), while TEA (2 - 10 mM) predominantly blocked IKs and IK[Ca]. The component IKm persisted in a solution containing TEA and 4-AP, activated at around - 55 mV, declined monoexponentially during maintained depolarization (tau=98 ms at + 45 mV), was 50% inactivated at - 39 mV, and recovered with tau=128 ms from inactivation. IKs activated at a similar threshold, but declined much slower with tau=2662 ms at + 45 mV. Steady-state inactivation of IKs was half-maximal at - 49 mV, and recovery from inactivation occurred relatively fast with tau=116 ms. From these data and additional current-clamp recordings it is concluded that the K+ currents, due to their wide range of kinetics and dependence on membrane voltage or internal Ca2+ concentration, are capable of cooperatively controlling the firing threshold and of shaping the different states of electrophysiological behaviour in LGN relay cells.

PubMed Disclaimer

Similar articles

Cited by

LinkOut - more resources