Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2002;4(4):241-6.
doi: 10.1186/ar414. Epub 2002 Mar 12.

The potential of human regulatory T cells generated ex vivo as a treatment for lupus and other chronic inflammatory diseases

Affiliations
Review

The potential of human regulatory T cells generated ex vivo as a treatment for lupus and other chronic inflammatory diseases

David A Horwitz et al. Arthritis Res. 2002.

Abstract

Regulatory T cells prevent autoimmunity by suppressing the reactivity of potentially aggressive self-reactive T cells. Contact-dependent CD4+ CD25+ 'professional' suppressor cells and other cytokine-producing CD4+ and CD8+ T-cell subsets mediate this protective function. Evidence will be reviewed that T cells primed with transforming growth factor (TGF)-beta expand rapidly following restimulation. Certain CD4+ T cells become contact-dependent suppressor cells and other CD4+ and CD8+ cells become cytokine-producing regulatory cells. This effect is dependent upon a sufficient amount of IL-2 in the microenvironment to overcome the suppressive effects of TGF-beta. The adoptive transfer of these suppressor cells generated ex vivo can protect mice from developing chronic graft-versus-host disease with a lupus-like syndrome and alter the course of established disease. These data suggest that autologous T cells primed and expanded with TGF-beta have the potential to be used as a therapy for patients with systemic lupus erythematosus and other chronic inflammatory diseases. This novel adoptive immunotherapy also has the potential to prevent the rejection of allogeneic transplants.

PubMed Disclaimer

Figures

Figure 1
Figure 1
The role of transforming growth factor-β (TGF-β) in the differentiation pathway of CD8+ regulatory T cells. In response to antigen stimulation, the combination of IL-2 produced by CD4+ cells and the active form of TGF-β produced by natural killer (NK) cells or macrophages (not shown) induce CD8+ cells to lose their cytotoxic potential and become regulatory, TGF-β-producing, Th3-like cells. IL-2 also enhances the extracellular conversion of TGF-β from the latent to the biologically active form.
Figure 2
Figure 2
The role of transforming growth factor-β (TGF-β) in the differentiation pathway of CD4+ regulatory T cells. Following T-cell activation where a sufficient amount of IL-2 is produced to overcome the inhibitory effects of TGF-β, the costimulatory effects of this cytokine induce the precursors of CD4+ CD25+ T cells to become contact-dependent 'professional' suppressor cells or induces CD4+ CD25- cells to produce immunosuppressive quantities of TGF-β . IFN, interferon; Tr-1, Treg 1 regulatory CD4+ cells.

References

    1. Fowell D, Mason D. Evidence that the T cell repertoire of normal rats contains cells with the potential to cause diabetes. Characterization of the CD4+ T cell subset that inhibits this autoimmune potential. J Exp Med. 1993;177:627–636. - PMC - PubMed
    1. Hafler DA, Weiner HL. Immunologic mechanisms and therapy in multiple sclerosis. Immunol Rev. 1995;144:75–107. - PubMed
    1. Sakaguchi S, Sakaguchi N, Asano M, Itoh M, Toda M. Immunologic self-tolerance maintained by activated T cells expressing IL-2 receptor-chains (CD25). Breakdown of a single mechanism of self-tolerance causes various autoimmune diseases. J Immunol. 1995;155:1151–1164. - PubMed
    1. Gershon RKA. A disquisition on suppressor T cells. Transplant Rev. 1975;26:170–185. - PubMed
    1. Shevach EM. Certified professionals: CD4+ CD25+ suppressor T cells. J Exp Med. 2001;193:41–46. - PMC - PubMed

MeSH terms

Substances