Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Clinical Trial
. 2002 Jul;87(7):3324-9.
doi: 10.1210/jcem.87.7.8660.

Acute changes of bone turnover and PTH induced by insulin and glucose: euglycemic and hypoglycemic hyperinsulinemic clamp studies

Affiliations
Clinical Trial

Acute changes of bone turnover and PTH induced by insulin and glucose: euglycemic and hypoglycemic hyperinsulinemic clamp studies

Jackie A Clowes et al. J Clin Endocrinol Metab. 2002 Jul.

Abstract

Bone turnover is acutely suppressed after feeding or oral glucose. Insulin infusion suppresses bone turnover and might mediate this effect, but this is confounded by a possible direct effect of hypoglycemia. We examined the effect of euglycemic hyperinsulinemia and hypoglycemic hyperinsulinemia on bone turnover using an insulin clamp. Sixteen men participated in this double-blind crossover study. Clamp induction involved infusion of insulin (80 mU/m(2).min) while maintaining euglycemia (5 mmol/liter) for 40 min with a variable rate dextrose infusion. Glucose was lowered to 2.5 mmol/liter (hypoglycemic clamp) or maintained at 5 mmol/liter (euglycemic clamp) for a further 105 min. Nine controls received a matched saline infusion. Measurements included serum C-terminal telopeptide of type I collagen, procollagen type I N-terminal propeptide, osteocalcin, and PTH. Induction of hyperinsulinemia resulted in a reduction in PTH (27% +/- 5; P < 0.01), but no significant change in bone turnover from baseline. Hypoglycemic clamp resulted in suppression of serum C-terminal telopeptide of type I collagen by 34% +/- 3, procollagen type I N-terminal propeptide by 15% +/- 1, osteocalcin by 5% +/- 1, and PTH by a further 12% +/- 5 (all P < 0.05). By contrast, there was no significant change in any marker of bone turnover during euglycemic clamp. Postprandial hyperinsulinemia is unlikely to explain the acute suppression of bone turnover with feeding. The reduction in bone turnover during hypoglycemia may be related to hypoglycemia itself, acute changes in PTH, or other hormones released in response to hypoglycemia.

PubMed Disclaimer

Publication types