Central mechanisms involved with catabolism
- PMID: 12107377
- DOI: 10.1097/00075197-200207000-00010
Central mechanisms involved with catabolism
Abstract
Purpose of review: Catabolism conjures up an end-metabolic process in which muscle and fat tissue are broken down into their constituent parts to provide nutrients for the body, secondary to a noxious stimulus that prevents the organism from adequately nourishing itself. However, catabolism is a primary event, initiated in the brain in response to perceived or real stresses or noxious stimuli, which has a secondary effect of inhibiting food intake and consequently the break down of skeletal muscle and adipose tissues to provide nutrients for the body to survive.
Recent findings: This is achieved via a cascade of neurohormonal monoaminergic and peptidergic mediators in the central nervous system, invoking the cortex, the limbic system and the hypothalamus. Among the most detailed mediators studied are corticotropin-releasing factor and serotonin which, via the hypothalamic-pituitary-adrenal axis and the sympathetic and parasympathetic nervous system, stimulate catecholamines and cortisol and inhibit anabolic hormones, insulin, leptin, ghrelin, including neuropeptide Y and other neuropeptides, among them the paracrine-acting cytokines. Simultaneously, there occurs stimulation of the counter-regulatory hormones cortisol, glucagon and the melanocortin family of neuropeptides.
Summary: The net effect is anorexia, with the inhibition of food intake, body weight loss, delayed gastric emptying and functions, the stimulation of gluconeogenesis, glycogenolysis and ketogenesis as sources of metabolic fuel, which if unabated leads ultimately to cachexia. The use of antagonists and the removal of stress or noxious stimuli experimentally test different pathways of this dynamic metabolic picture. Several studies have demonstrated important progress towards our understanding of the central mechanisms involved in anorexia and weight loss, which we summarize in this review.
Publication types
MeSH terms
Grants and funding
LinkOut - more resources
Full Text Sources
Medical
Research Materials