Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2002;4 Suppl 3(Suppl 3):S273-8.
doi: 10.1186/ar555. Epub 2002 May 9.

Single nucleotide polymorphisms and disease gene mapping

Affiliations
Review

Single nucleotide polymorphisms and disease gene mapping

John I Bell. Arthritis Res. 2002.

Abstract

Single nucleotide polymorphisms are the most important and basic form of variation in the genome, and they are responsible for genetic effects that produce susceptibility to most autoimmune diseases. The rapid development of databases containing very large numbers of single nucleotide polymorphisms, and the characterization of haplotypes and patterns of linkage disequilibrium throughout the genome, provide a unique opportunity to advance association strategies in common disease rapidly over the next few years. Only the careful use of these strategies and a clear understanding of their statistical limits will allow novel genetic determinants for many of the common autoimmune diseases to be determined.

PubMed Disclaimer

Similar articles

Cited by

References

    1. Nakamura Y, Koyama K, Matsushima M. VNTR (variable number of tandem repeat) sequences as transcriptional, translational or functional regulators. J Hum Genet (Jpn) 1998;43:149–152. doi: 10.1007/s100380050059. - DOI - PubMed
    1. Altmüller J, Palmer LJ, Fischer G, Scherb H, Wjst M. Genomewide scans of complex human diseases: true linkage is hard to find. Am J Hum Genet. 2001;69:936–950. doi: 10.1086/324069. - DOI - PMC - PubMed
    1. Mullikin JC, Hunt SE, Cole CG, Mortimore BJ, Rice CM, Burton J, Matthews LH, Pavitt R, Plumb RW, Sims SK, Ainscough RM, Attwood J, Bailey JM, Barlow K, Bruskiewich RM, Butcher PN, Carter NP, Chen Y, Clee CM, Coggill PC, Davies J, Davies RM, Dawson E, Francis MD, Joy AA, Lamble RG, Langford CF, Macarthy J, Mall V, Moreland A, Overton-Larty EK, Ross MT, Smith LC, Steward CA, Sulston JE, Tinsley EJ, Turney KJ, Willey DL, Wilson GD, McMurray AA, Dunham I, Rogers J, Bentley DR. An SNP map of human chromsome 22. Nature. 2000;407:516–520. doi: 10.1038/35035089. - DOI - PubMed
    1. Sachidanandam R, Weissman D, Schmidt SC, Kakol JM, Stein LD, Marth G, Sherry S, Mullikin JC, Mortimore BJ, Willey DL, Hunt SE, Cole CG, Coggill PC, Rice CM, Ning Z, Rogers J, Bentley DR, Kwok PY, Mardis ER, Yeh RT, Schultz B, Cook L, Davenport R, Dante M, Fulton L, Hillier L, Waterston RH, McPherson JD, Gilman B, Schaffner S, Van Etten WJ, Reich D, Higgins J, Daly MJ, Blumenstiel B, Baldwin J, Stange-Thomann N, Zody MC, Linton L, Lander ES, Altshuler D. A map of human genome sequence variation containing 1.42 single nucleotide polymorphisms. Nature. 2001;409:928–933. doi: 10.1038/35057149. - DOI - PubMed
    1. Altshuler D, Pollara VJ, Cowles CR, Van Etten WJ, Baldwin J, Linton L, Lander ES. An SNP map of the human genome generated by reduced representation shotgun sequencing. Nature. 2000;407:513–516. doi: 10.1038/35035083. - DOI - PubMed