Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2002 Jul;31(1):77-84.
doi: 10.1016/s8756-3282(02)00792-5.

Mechanical strength of the thoracolumbar spine in the elderly: prediction from in situ dual-energy X-ray absorptiometry, quantitative computed tomography (QCT), upper and lower limb peripheral QCT, and quantitative ultrasound

Affiliations

Mechanical strength of the thoracolumbar spine in the elderly: prediction from in situ dual-energy X-ray absorptiometry, quantitative computed tomography (QCT), upper and lower limb peripheral QCT, and quantitative ultrasound

E-M Lochmüller et al. Bone. 2002 Jul.

Abstract

The objective of this study was to compare the ability of clinically available densitometric measurement techniques for evaluating vertebral strength in elderly individuals. Measurements were related to experimentally determined failure strength in the thoracic and lumbar spine. In 127 specimens (82 women and 45 men, age 80 +/- 10 years), dual-energy X-ray absorptiometry (DXA) was performed at the lumbar spine, femur, radius, and total body, and peripheral-quantitative computed tomography (pQCT) at the distal radius, tibia, and femur under in situ conditions with intact soft tissues. Spinal QCT and calcaneal ultrasound parameters were performed ex situ in degassed specimens. Mechanical failure loads of thoracic vertebrae 6 and 10 (T-6 and -10), and lumbar vertebra 3 (L-3) were determined in axial compression on functional three-segment units. In situ anteroposterior DXA and QCT of the lumbar spine explained approximately 65% of the variability of thoracolumbar failure. A combination of cortical and trabecular density (QCT) provided the best prediction in the lumbar spine. However, this was not the case in the thoracic spine, for which lumbar cortical density (QCT) and DXA provided significantly better estimates than trabecular density (QCT). pQCT was significantly less correlated with the strength of lumbar and thoracic vertebrae (r(2) = 40%), but was equivalent to femoral or radial DXA. pQCT measurements in the lower limb showed no advantage over those at the distal radius. Ultrasound explained approximately 25% of the variability of vertebral failure strength and added independent information to spinal QCT, but not to spinal DXA. These experimental results advocate site-specific assessment of vertebral strength by either spinal DXA or QCT.

PubMed Disclaimer

Similar articles

Cited by

Publication types

LinkOut - more resources