NMR analysis of a 900K GroEL GroES complex
- PMID: 12110894
- DOI: 10.1038/nature00860
NMR analysis of a 900K GroEL GroES complex
Abstract
Biomacromolecular structures with a relative molecular mass (M(r)) of 50,000 to 100,000 (50K 100K) have been generally considered to be inaccessible to analysis by solution NMR spectroscopy. Here we report spectra recorded from bacterial chaperonin complexes ten times this size limit (up to M(r) 900K) using the techniques of transverse relaxation-optimized spectroscopy and cross-correlated relaxation-enhanced polarization transfer. These techniques prevent deterioration of the NMR spectra by the rapid transverse relaxation of the magnetization to which large, slowly tumbling molecules are otherwise subject. We tested the resolving power of these techniques by examining the isotope-labelled homoheptameric co-chaperonin GroES (M(r) 72K), either free in solution or in complex with the homotetradecameric chaperonin GroEL (M(r) 800K) or with the single-ring GroEL variant SR1 (M(r) 400K). Most amino acids of GroES show the same resonances whether free in solution or in complex with chaperonin; however, residues 17 32 show large chemical shift changes on binding. These amino acids belong to a mobile loop region of GroES that forms contacts with GroEL. This establishes the utility of these techniques for solution NMR studies that should permit the exploration of structure, dynamics and interactions in large macromolecular complexes.
Similar articles
-
Probing dynamics and conformational change of the GroEL-GroES complex by 13C NMR spectroscopy.J Biochem. 2006 Oct;140(4):591-8. doi: 10.1093/jb/mvj188. Epub 2006 Sep 8. J Biochem. 2006. PMID: 16963786
-
Allostery wiring diagrams in the transitions that drive the GroEL reaction cycle.J Mol Biol. 2009 Mar 27;387(2):390-406. doi: 10.1016/j.jmb.2008.12.032. Epub 2008 Dec 24. J Mol Biol. 2009. PMID: 19121324
-
Characterisation of mutations in GroES that allow GroEL to function as a single ring.FEBS Lett. 2009 Jul 21;583(14):2365-71. doi: 10.1016/j.febslet.2009.06.027. Epub 2009 Jun 21. FEBS Lett. 2009. PMID: 19545569
-
Application of fluorescence resonance energy transfer to the GroEL-GroES chaperonin reaction.Methods. 2001 Jul;24(3):278-88. doi: 10.1006/meth.2001.1188. Methods. 2001. PMID: 11403576 Free PMC article. Review.
-
GroEL-GroES-mediated protein folding.Chem Rev. 2006 May;106(5):1917-30. doi: 10.1021/cr040435v. Chem Rev. 2006. PMID: 16683761 Review. No abstract available.
Cited by
-
Structural and biochemical analysis of the assembly and function of the yeast pre-mRNA 3' end processing complex CF I.Proc Natl Acad Sci U S A. 2012 Dec 26;109(52):21342-7. doi: 10.1073/pnas.1214102110. Epub 2012 Dec 10. Proc Natl Acad Sci U S A. 2012. PMID: 23236150 Free PMC article.
-
Accurate protein structure modeling using sparse NMR data and homologous structure information.Proc Natl Acad Sci U S A. 2012 Jun 19;109(25):9875-80. doi: 10.1073/pnas.1202485109. Epub 2012 Jun 4. Proc Natl Acad Sci U S A. 2012. PMID: 22665781 Free PMC article.
-
Unfolding the mechanism of the AAA+ unfoldase VAT by a combined cryo-EM, solution NMR study.Proc Natl Acad Sci U S A. 2016 Jul 19;113(29):E4190-9. doi: 10.1073/pnas.1603980113. Epub 2016 Jul 11. Proc Natl Acad Sci U S A. 2016. PMID: 27402735 Free PMC article.
-
NMR of redox proteins of plants, yeasts and photosynthetic bacteria.Photosynth Res. 2004;79(3):357-67. doi: 10.1023/B:PRES.0000017161.63661.9d. Photosynth Res. 2004. PMID: 16328801
-
Robert Feulgen Lecture. Microscopic assessment of membrane protein structure and function.Histochem Cell Biol. 2003 Aug;120(2):93-102. doi: 10.1007/s00418-003-0560-1. Epub 2003 Jul 24. Histochem Cell Biol. 2003. PMID: 12898277
Publication types
MeSH terms
Substances
LinkOut - more resources
Full Text Sources
Other Literature Sources
Research Materials