Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2002 Jun;51(6):709-15.
doi: 10.1002/ana.10213.

Periaxin mutations cause a broad spectrum of demyelinating neuropathies

Affiliations

Periaxin mutations cause a broad spectrum of demyelinating neuropathies

Hiroshi Takashima et al. Ann Neurol. 2002 Jun.

Abstract

Previous studies have demonstrated that apparent loss-of-function mutations in the periaxin gene cause autosomal recessive Dejerine-Sottas neuropathy or severe demyelinating Charcot-Marie-Tooth disease. In this report, we extend the associated phenotypes with the identification of two additional families with novel periaxin gene mutations (C715X and R82fsX96) and provide detailed neuropathology. Each patient had marked sensory involvement; two siblings with a homozygous C715X mutation had much worse sensory impairment than motor impairment. Despite early disease onset, these siblings with the C715X mutation had relatively slow disease progression and adult motor impairment typical of classic demyelinating Charcot-Marie-Tooth neuropathy. In contrast, a patient with the homozygous R82fsX96 mutation had a disease course consistent with Dejerine-Sottas neuropathy. The neuropathology of patients in both families was remarkable for demyelination, onion bulb and occasional tomacula formation with focal myelin thickening, abnormalities of the paranodal myelin loops, and focal absence of paranodal septate-like junctions between the terminal loops and axon. Our study indicates a prominent sensory neuropathy resulting from periaxin gene mutations and suggests a role for the carboxyl terminal domain of the periaxin protein.

PubMed Disclaimer

Similar articles

Cited by

Publication types

MeSH terms

LinkOut - more resources