Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2002 Jul 12;91(1):46-53.
doi: 10.1161/01.res.0000024115.67561.54.

Phosphatidylinositol 3-kinase functionally compartmentalizes the concurrent G(s) signaling during beta2-adrenergic stimulation

Affiliations
Free article

Phosphatidylinositol 3-kinase functionally compartmentalizes the concurrent G(s) signaling during beta2-adrenergic stimulation

Su-Hyun Jo et al. Circ Res. .
Free article

Abstract

Compartmentation of intracellular signaling pathways serves as an important mechanism conferring the specificity of G protein-coupled receptor (GPCR) signaling. In the heart, stimulation of beta2-adrenoceptor (beta2-AR), a prototypical GPCR, activates a tightly localized protein kinase A (PKA) signaling, which regulates substrates at cell surface membranes, bypassing cytosolic target proteins (eg, phospholamban). Although a concurrent activation of beta2-AR-coupled G(i) proteins has been implicated in the functional compartmentation of PKA signaling, the exact mechanism underlying the restriction of the beta2-AR-PKA pathway remains unclear. In the present study, we demonstrate that phosphatidylinositol 3-kinase (PI3K) plays an essential role in confining the beta2-AR-PKA signaling. Inhibition of PI3K with LY294002 or wortmannin enables beta2-AR-PKA signaling to reach intracellular substrates, as manifested by a robust increase in phosphorylation of phospholamban, and markedly enhances the receptor-mediated positive contractile and relaxant responses in cardiac myocytes. These potentiating effects of PI3K inhibitors are not accompanied by an increase in beta2-AR-induced cAMP formation. Blocking G(i) or Gbetagamma signaling with pertussis toxin or betaARK-ct, a peptide inhibitor of Gbetagamma, completely prevents the potentiating effects induced by PI3K inhibition, indicating that the pathway responsible for the functional compartmentation of beta2-AR-PKA signaling sequentially involves G(i), Gbetagamma, and PI3K. Thus, PI3K constitutes a key downstream event of beta2-AR-G(i) signaling, which confines and negates the concurrent beta2-AR/G(s)-mediated PKA signaling.

PubMed Disclaimer

Similar articles

Cited by

Publication types

MeSH terms

Substances

LinkOut - more resources