Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2002 Jul;259(6):316-21.
doi: 10.1007/s00405-002-0446-1. Epub 2002 May 14.

A tissue-engineering model for the manufacture of auricular-shaped cartilage implants

Affiliations

A tissue-engineering model for the manufacture of auricular-shaped cartilage implants

Andreas Haisch et al. Eur Arch Otorhinolaryngol. 2002 Jul.

Abstract

The established surgical methods of external ear reconstruction using autogenous tissue represent the current state of the art. Because of the limited possibilities for shaping conventional harvested autogenous rib cartilage, the cosmetic results of auricular reconstruction are frequently unsatisfactory. Tissue engineering could represent an alternative technique for obtaining a precisely shaped cartilage implant that avoids donor site morbidity and unsatisfactory cosmetic results. In this study, the reliability and quality of a tissue-engineering model for the manufacture of auricular-shaped human cartilage implants was investigated, focusing on the feasibility of the manufacturing process and the in vivo and in vitro maturation of an extracellular cartilage-like matrix. Implants were molded within an auricular-shaped silicone cylinder, and human nasal septal chondrocytes crosslinked by human fibrin within bioresorbable PGLA-PLLA polymer scaffolds were used. After an in vitro incubation of up to 6 weeks, defined fragments of the prefabricated auricular-shaped construct were implanted subcutaneously on the backs of nude mice for at least 6 to 12 weeks ( n=7). Scaffolds without cell loading served as controls. Macroscopic and histochemical examination after 3 and 6 weeks in vitro showed a solid compound of homogenously distributed chondrocytes within the polymer scaffold, leading only to a limited pericellular matrix formation. Analysis after 6 and 12 weeks of in vivo maturation demonstrated a solid tissue compound and neocartilage formation with the presence of cartilage-specific matrix components. Implants obtained shape and size during the entire period of implantation. The model of cartilage implant manufacturing presented here meets all biocompatible requirements for in vitro prefabrication and in vivo maturation of autogenous, individually shaped cartilage transplants.

PubMed Disclaimer

Publication types

Substances

LinkOut - more resources