Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2001;61(4):276-86.
doi: 10.1002/bip.10156.

Influence of netropsin's charges on the minor groove width of d(CGCGAATTCGCG)2

Affiliations

Influence of netropsin's charges on the minor groove width of d(CGCGAATTCGCG)2

B Wellenzohn et al. Biopolymers. 2001.

Abstract

The exact understanding of the interaction of minor groove binding drugs with DNA is of interest due to their importance as transcription controlling drugs. In this study we performed four molecular dynamics simulations, one of the uncomplexed d(CGCGAATTCGCG)(2) dodecamer and three simulations of the DNA complexed with the minor groove binder netropsin. The charged guanidinium and amidinium ends of the small ligand were in one simulation formally uncharged, in the second one normally charged, and in the third simulation we doubled the charges of the two ends. So we are able to filter out the influence the charges exert on the DNA structure. The positive charges reduce the width of the minor groove showing that charges are able to modify the groove width by charge neutralization of the negative phosphate groups. The quality of the used force field was successfully tested by comparing the results of the uncomplexed dodecamer with already reported NMR and x-ray studies. Thus our simulations should be able to describe the minor groove width of DNA in a correct manner underlying the validity of the results.

PubMed Disclaimer

Similar articles

Cited by

Publication types

LinkOut - more resources