Optimal temperature and photoperiod for the cultivation of Agardhiella subulata microplantlets in a bubble-column photobioreactor
- PMID: 12115429
- DOI: 10.1002/bit.10307
Optimal temperature and photoperiod for the cultivation of Agardhiella subulata microplantlets in a bubble-column photobioreactor
Abstract
The optimal temperature and illumination photoperiod requirements for the phototrophic growth of a novel microplantlet suspension culture derived from the macrophytic marine red alga Agardhiella subulata were determined. The optimal growth temperature was 24 degrees C. The effects of illumination light-dark (LD) photoperiod (hour of light:hours of darkness within a 24 h cycle) on biomass production was studied within a bubble-column photobioreactor. The 4.5 cm diameter photobioreactor was maintained at near-saturation conditions with respect to light flux (38 mciromol photons m(-2) s(-1)), nutrient medium delivery (20% nutrient replacement per day), and CO(2) delivery (0.35 mmol CO(2) L(-1) h(-1)) so that the cumulative effects of photodamage on the cell density versus time curve at photoperiods approaching continuous light could be observed. Biomass production was maximized at 16:8 LD, where biomass densities exceeding 3.6 g dry cell mass L(-1) were achieved after 60 days in culture. Biomass production was proportional to photoperiod at low fractional photoperiods (< or =10:14 LD), but high fractional photoperiods approaching continuous light (> or = 20:4 LD) shut down biomass production. Biomass production versus time profiles under resource-saturated cultivation conditions were adequately described by a cumulative photodamage growth model, which coupled reversible photodamage processes to the specific growth rate. Under light-saturated growth conditions, the rate constant for photodamage was kd = 1.17 +/- 0.28 day(-1) (+/-1.0 SE), and the rate constant for photodamage repair was kr = 5.12 +/- 0.95 day(-1) (+/-1.0 SE) at 24 degrees C.
Copyright 2002 Wiley Periodicals, Inc
Publication types
MeSH terms
Substances
LinkOut - more resources
Full Text Sources
Research Materials
