Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1975 Jul-Aug;126B(1):51-61.

[The role of heavy metals and their derivatives in the selection of antibiotics resistant gram-negative rods (author's transl)]

[Article in French]
  • PMID: 1211722

[The role of heavy metals and their derivatives in the selection of antibiotics resistant gram-negative rods (author's transl)]

[Article in French]
B Joly et al. Ann Microbiol (Paris). 1975 Jul-Aug.

Abstract

The authors have studied 116 Gram-negative strains, 27 of which were sensitive to antibiotics and 89 showed multiple resistance. The MIC of mercury chloride, mercuric nitrate and of an aqueous solution of mercuresceine were much higher in the case of the sensitive strains. The transfer of resistance to mercury, which has been achieved in 56% of cases, was always accompanied by transfer of resistance to the antibiotics. The MIC of phenylmercury borate, mercurothiolic acid and other heavy metals (such as: cobaltous nitrate, silver nitrate, cadmium nitrate, nickel nitrate, zinc nitrate, copper sulphate and sodium arsenate) are approximatively the same for all strains. The normal concentrations of mercury in nature are lower than the rate of microbial selection. But in areas of accumulation, particularly in biological chains or in hospitals, the mercury compounds could play a part in the selection of antibiotic resistant Gram-negative bacteria.

PubMed Disclaimer

Similar articles

Cited by

Publication types

MeSH terms