p38 mitogen-activated protein kinase is required for TGFbeta-mediated fibroblastic transdifferentiation and cell migration
- PMID: 12118074
- DOI: 10.1242/jcs.115.15.3193
p38 mitogen-activated protein kinase is required for TGFbeta-mediated fibroblastic transdifferentiation and cell migration
Abstract
Transforming growth factor beta (TGFbeta) contributes to tumor progression by inducing an epithelial to mesenchymal transdifferentiation (EMT) and cell migration. We found that TGFbeta-induced EMT was blocked by inhibiting activation of p38 mitogen-activated protein kinase (MAPK) with H-7, a protein kinase C inhibitor, and with SB202190, a direct inhibitor of p38MAPK. Inhibition of the p38MAPK pathway affected TGFbeta-mediated phosphorylation of ATF2, but did not inhibit phosphorylation of Smad2. SB202190 impaired TGFbeta-mediated changes in cell shape and reorganization of the actin cytoskeleton. Forced expression of dominant-negative (DN) MAPK kinase 3 (MKK3) inhibited TGFbeta-mediated activation of p38MAPK and EMT. Expression of DN-p38alpha impaired TGFbeta-induced EMT. Inhibition of p38MAPK blocked TGFbeta-induced migration of non-tumor and tumor mammary epithelial cells. TGFbeta induced activation of the p38MAPK pathway within 15 minutes. Expression of TGFbeta type II (TbetaRII) and type I (TbetaRI/Alk5) kinase-inactive receptors blocked EMT and activation of p38MAPK, whereas expression of constitutively active Alk5-T204D resulted in EMT and phosphorylation of MKK3/6 and p38MAPK. Finally, dominant-negative Rac1N17 blocked TGFbeta-induced activation of the p38MAPK pathway and EMT, suggesting that Rac1 mediates activation of the p38MAPK pathway. These studies suggest that the p38MAPK pathway is required for TGFbeta-mediated EMT and cell migration.
Publication types
MeSH terms
Substances
Grants and funding
LinkOut - more resources
Full Text Sources
Other Literature Sources
Molecular Biology Databases
Research Materials
Miscellaneous
