Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2002 Jul;15(7):647-53.
doi: 10.1094/MPMI.2002.15.7.647.

Virulence and differential local and systemic spread of cucumber mosaic virus in tobacco are affected by the CMV 2b protein

Affiliations
Free article

Virulence and differential local and systemic spread of cucumber mosaic virus in tobacco are affected by the CMV 2b protein

Avril J Soards et al. Mol Plant Microbe Interact. 2002 Jul.
Free article

Abstract

A mutant of the Cucumber mosaic virus subgroup IA strain Fny (Fny-CMV) lacking the gene encoding the 2b protein (Fny-CMVdelta2b) induced a symptomless systemic infection in tobacco. Both the accumulation of Fny-CMVdelta2b in inoculated tissue and the systemic movement of the virus appeared to proceed more slowly than for wild-type Fny-CMV. The influence of the 2b protein on virus movement in the inoculated leaf was examined using viral constructs derived from Fny-CMV and Fny-CMVdelta2b expressing the green fluorescent protein. Laser scanning confocal microscopy was used to visualize the movement of these viruses. Whereas the wild-type virus spread between the epidermal cells as well as the mesophyll cells, the mutant virus spread less efficiently through the epidermal layer and moved preferentially through the mesophyll. Thus, the 2b protein of Fny-CMV influences the dynamics of movement of the virus both within the inoculated leaf and through the whole plant. We propose that this altered movement profile of Fny-CMVdelta2b results in the absence of disease symptoms in tobacco.

PubMed Disclaimer

Similar articles

Cited by

Publication types

MeSH terms

LinkOut - more resources