Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2002 Jun;53(2):147-57.

Serum response factor: discovery, biochemistry, biological roles and implications for tissue injury healing

Affiliations
  • PMID: 12120892
Free article
Review

Serum response factor: discovery, biochemistry, biological roles and implications for tissue injury healing

J Chai et al. J Physiol Pharmacol. 2002 Jun.
Free article

Abstract

Serum response factor (SRF) is a transcription factor, which binds to a serum response element (SRE) associated with a variety of genes including immediate early genes such as c-fos, fosB, junB, egr-1 and -2, neuronal genes such as nurr1 and nur77 and muscle genes such as actins and myosins. By regulating expression of these genes, SRF controls cell growth and differentiation, neuronal transmission as well as muscle development and function. SRF can be activated by a variety of agents, including serum, lysophosphatidic acid (LPA), lipopolysaccharide (LPS), 12-O-tetradecanoylphorbol-13-acetate (TPA), cytokines, tumor necrosis factor-alpha (TNFalpha), agents that increase intracellular Ca2+, T-cell virus1 activator protein, hepatitis B virus activator proteins pX, activated oncogenes and protooncogenes as well as extracellular stimuli such as antioxidant and UV light. SRF itself is regulated by both cellular signal transduction pathways and interaction with other transcription factors e.g. Sp1, ATF6 and myogenic regulatory factors. Its biological function is best elucidated for myocardium. Specific cardiac SRF transgenesis demonstrated that overexpression of SRF caused hypertrophic cardiomyopathy in mouse and the mouse died of heart failure within 6 months after birth. Other transgenic data suggested that sufficient SRF was needed for embryogenesis and early development. Since SRF is important regulator of numerous genes involved in cell growth and differentiation, including muscle and neural components, SRF may also play a crucial role in tissue injury and ulcer healing, e.g. healing of gastrointestinal ulcers.

PubMed Disclaimer

Publication types

Substances