Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2002 Aug;283(2):R487-95.
doi: 10.1152/ajpregu.00699.2001.

Microvessel formation from mouse embryonic aortic explants is oxygen and VEGF dependent

Affiliations
Free article

Microvessel formation from mouse embryonic aortic explants is oxygen and VEGF dependent

Tetsu Akimoto et al. Am J Physiol Regul Integr Comp Physiol. 2002 Aug.
Free article

Abstract

To delineate the roles of O(2) and vascular endothelial growth factor (VEGF) in the process of angiogenesis from the embryonic aorta, we cultured mouse embryonic aorta explants (thoracic level to lateral vessels supplying the mesonephros and metanephros) in a three-dimensional type I collagen gel matrix. During 8 days of culture under 5% O(2), but not room air, the addition of VEGF to explants stimulated the formation of CD31-positive, Flk-1-positive, Gs-IB(4)-positive structures in a concentration-dependent manner. Electron microscopy showed the structures to be capillary-like. VEGF-induced capillary-like structure formation was inhibited by sequestration of VEGF via addition of soluble Flt-1 fusion protein or anti-VEGF antibodies. Expression of Flk-1, but not Flt-1, was increased in embryonic aorta cultured under 5% O(2) relative to room air. Our data suggest that low O(2) upregulates Flk-1 expression in embryonic aorta in vitro and renders it more responsive to VEGF.

PubMed Disclaimer

Publication types

MeSH terms

Substances

LinkOut - more resources