Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2002 Aug 1;55(2):250-60.
doi: 10.1016/s0008-6363(02)00327-9.

Vasoprotection by nitric oxide: mechanisms and therapeutic potential

Affiliations
Review

Vasoprotection by nitric oxide: mechanisms and therapeutic potential

Michael T Gewaltig et al. Cardiovasc Res. .

Abstract

Endothelial production of nitric oxide (nitrogen monoxide, NO) has become a major research area in vascular biology. Some of the most important effects that NO exerts in the vascular wall are potentially vasoprotective, because these effects maintain important physiological functions such as vasodilation, anticoagulation, leucocyte adhesion, smooth muscle proliferation, and the antioxidative capacity. During the last 2 decades it has become apparent that a variety of diseases are associated with an impairment of endothelium-dependent NO activity. One of the major causes is believed to be an increased production of reactive oxygen species, in particular superoxide, which have been shown to interfere with many steps of the NO--cyclic guanosine monophosphate (cGMP) pathway. This phenomenon has been found in diverse conditions such as atherosclerosis, hypertension, diabetes, hypercholesterolemia, heart failure, and cigarette smoking. The aim of this review is to examine the cellular and molecular mechanisms whereby NO exerts potentially vasoprotective effects and to discuss pharmacologic approaches targeting the NO pathway in view of their potential to improve endothelial function and to reduce the progression of atherosclerotic vascular disease. We conclude that there is compelling evidence for vasoprotective actions of NO which are mediated by cGMP-dependent and cGMP-independent mechanisms. These effects may contribute to the beneficial effects of established drugs such as ACE inhibitors or statins. Unfortunately, clinical data on the effect of long-term treatment with nitrates on the progression of coronary artery disease are lacking. Finally, L-arginine or new activators of the NO pathway may become therapeutic options in the future.

PubMed Disclaimer

Similar articles

Cited by

MeSH terms

LinkOut - more resources