Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2002 Jul;39(3):206-16.
doi: 10.1053/shem.2002.34088.

Towards safer thrombolytic therapy

Affiliations
Review

Towards safer thrombolytic therapy

Victor J Marder et al. Semin Hematol. 2002 Jul.

Abstract

Plasminogen activators (PA) are unique agents that are currently applied as thrombolytic therapy to achieve rapid vascular reperfusion. Regimens of PA plus anticoagulants and antiplatelet drugs have attained a high degree of sophistication and predictable rates of positive clinical outcomes for acute myocardial infarction (MI), ischemic stroke, pulmonary embolism (PE), deep vein thrombosis (DVT), and thrombosed catheters. Included in the repertoire are newly approved mutants of tissue plasminogen activator (TPA), which have biochemical advantages that allow for bolus administration. Yet, despite tremendous effort devoted to enormous trials to establish the clinical efficacy of these agents in acute MI, mortality results are not superior to those with native TPA or streptokinase (SK). Furthermore, all PAs have the potential for hemorrhagic complication, most critically intracranial hemorrhage (ICH), occurring in 0.9% of patients treated with native or mutant TPA. It is possible that a limit of clinical effectiveness has been reached, beyond which more potent PAs do not achieve greater benefit without a serious increase in risk of bleeding. A breakthrough is possible, however, if the risk of ICH could be avoided. One solution is the application of the direct-acting thrombolytic enzyme, plasmin. While intravenous plasmin is not effective when administered systemically, regional infusion to a thrombus induces local thrombolysis. Unlike the PAs, plasmin treatment should not cause hemorrhage from vascular trauma sites, as it is neutralized by antiplasmin in the blood. Animal studies are fully consistent with this approach, which offers potential for achieving a truly regional thrombolytic treatment.

PubMed Disclaimer

MeSH terms

Substances

LinkOut - more resources