Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2002 Aug 1;53(5):1337-49.
doi: 10.1016/s0360-3016(02)02884-5.

Flat-panel cone-beam computed tomography for image-guided radiation therapy

Affiliations

Flat-panel cone-beam computed tomography for image-guided radiation therapy

David A Jaffray et al. Int J Radiat Oncol Biol Phys. .

Abstract

Purpose: Geometric uncertainties in the process of radiation planning and delivery constrain dose escalation and induce normal tissue complications. An imaging system has been developed to generate high-resolution, soft-tissue images of the patient at the time of treatment for the purpose of guiding therapy and reducing such uncertainties. The performance of the imaging system is evaluated and the application to image-guided radiation therapy is discussed.

Methods and materials: A kilovoltage imaging system capable of radiography, fluoroscopy, and cone-beam computed tomography (CT) has been integrated with a medical linear accelerator. Kilovoltage X-rays are generated by a conventional X-ray tube mounted on a retractable arm at 90 degrees to the treatment source. A 41 x 41 cm(2) flat-panel X-ray detector is mounted opposite the kV tube. The entire imaging system operates under computer control, with a single application providing calibration, image acquisition, processing, and cone-beam CT reconstruction. Cone-beam CT imaging involves acquiring multiple kV radiographs as the gantry rotates through 360 degrees of rotation. A filtered back-projection algorithm is employed to reconstruct the volumetric images. Geometric nonidealities in the rotation of the gantry system are measured and corrected during reconstruction. Qualitative evaluation of imaging performance is performed using an anthropomorphic head phantom and a coronal contrast phantom. The influence of geometric nonidealities is examined.

Results: Images of the head phantom were acquired and illustrate the submillimeter spatial resolution that is achieved with the cone-beam approach. High-resolution sagittal and coronal views demonstrate nearly isotropic spatial resolution. Flex corrections on the order of 0.2 cm were required to compensate gravity-induced flex in the support arms of the source and detector, as well as slight axial movements of the entire gantry structure. Images reconstructed without flex correction suffered from loss of detail, misregistration, and streak artifacts. Reconstructions of the contrast phantom demonstrate the soft-tissue imaging capability of the system. A contrast of 47 Hounsfield units was easily detected in a 0.1-cm-thick reconstruction for an imaging exposure of 1.2 R (in-air, in absence of phantom). The comparison with a conventional CT scan of the phantom further demonstrates the spatial resolution advantages of the cone-beam CT approach.

Conclusions: A kV cone-beam CT imaging system based on a large-area, flat-panel detector has been successfully adapted to a medical linear accelerator. The system is capable of producing images of soft tissue with excellent spatial resolution at acceptable imaging doses. Integration of this technology with the medical accelerator will result in an ideal platform for high-precision, image-guided radiation therapy.

PubMed Disclaimer

Publication types

MeSH terms