Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2002 Aug 1;100(3):982-90.
doi: 10.1182/blood.v100.3.982.

Regulation of leukemic cell adhesion, proliferation, and survival by beta-catenin

Affiliations
Free article

Regulation of leukemic cell adhesion, proliferation, and survival by beta-catenin

Eun Joo Chung et al. Blood. .
Free article

Abstract

In epithelial cells beta-catenin plays a critical role as a component of the cell-cell adhesion apparatus and as a coactivator of the TCF/LEF (T-cell transcription factor/lymphoid enhancer binding factor) family of transcription factors. Deregulation of beta-catenin has been implicated in the malignant transformation of cells of epithelial origin. However, a function for beta-catenin in hematologic malignancies has not been reported. beta-Catenin is not detectable in normal peripheral blood T cells but is expressed in T-acute lymphoblastic leukemia cells and other tumor lines of hematopoietic origin and in primary lymphoid and myeloid leukemia cells. beta-Catenin function was examined in Jurkat T-acute lymphoblastic leukemia cells. Overexpression of dominant-negative beta-catenin or dominant-negative TCF reduced beta-catenin nuclear signaling and inhibited Jurkat proliferation and clonogenicity. Similarly, these constructs inhibited proliferation of K562 and HUT-102 cells. Reduction of beta-catenin expression with beta-catenin antisense down-regulated adhesion of Jurkat cells in response to phytohemagglutinin. Incubation of Jurkat cells with anti-Fas induced caspase-dependent limited proteolysis of beta-catenin N- and C-terminal regions and rapid redistribution of beta-catenin to the detergent-insoluble cytoskeleton, concomitant with a marked decline in nuclear beta-catenin signaling. Fas-mediated apoptosis was potentiated by inhibition of beta-catenin nuclear signaling. The data suggest that beta-catenin can play a significant role in promoting leukemic cell proliferation, adhesion, and survival.

PubMed Disclaimer

MeSH terms