Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2002 Aug;143(8):3105-13.
doi: 10.1210/endo.143.8.8954.

p38 MAPK-mediated signals are required for inducing osteoclast differentiation but not for osteoclast function

Affiliations

p38 MAPK-mediated signals are required for inducing osteoclast differentiation but not for osteoclast function

Xiaotong Li et al. Endocrinology. 2002 Aug.

Abstract

Receptor activator of nuclear factor-kappaB ligand (RANKL)-induced signals play critical roles in osteoclast differentiation and function. SB203580, an inhibitor of p38 MAPK, blocked osteoclast formation induced by 1alpha,25-dihydroxyvitamin D(3) and prostaglandin E(2) in cocultures of mouse osteoblasts and bone marrow cells. Nevertheless, SB203580 showed no inhibitory effect on RANKL expression in osteoblasts treated with 1alpha,25-dihydroxyvitamin D(3) and prostaglandin E(2). RANKL-induced osteoclastogenesis in bone marrow cultures was inhibited by SB203580, suggesting a direct effect of SB203580 on osteoclast precursors, but not on osteoblasts, in osteoclast differentiation. However, SB203580 inhibited neither the survival nor dentine-resorption activity of osteoclasts induced by RANKL. Lipopolysaccharide (LPS), IL-1, and TNFalpha all stimulated the survival of osteoclasts, which was not inhibited by SB203580. Phosphorylation of p38 MAPK was induced by RANKL, IL-1, TNFalpha, and LPS in osteoclast precursors but not in osteoclasts. LPS stimulated phosphorylation of MAPK kinase 3/6 and ATF2, upstream and downstream signals of p38 MAPK, respectively, in osteoclast precursors but not in osteoclasts. Nevertheless, LPS induced degradation of IkappaB and phosphorylation of ERK in osteoclasts as well as in osteoclast precursors. These results suggest that osteoclast function is induced through a mechanism independent of p38 MAPK-mediated signaling.

PubMed Disclaimer

Publication types

LinkOut - more resources